Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:55:27.508Z Has data issue: false hasContentIssue false

Size-independent strength of amorphous–HCP crystalline metallic nanolayers

Published online by Cambridge University Press:  12 March 2019

Mohammad Abboud
Affiliation:
Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
Sezer Özerinç*
Affiliation:
Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey Department of Mechanical Engineering, Middle East Technical University, Ankara 06800, Turkey
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Amorphous/crystalline (A/C) nanolayers provide an effective model system to study the mechanical behavior and size effects of metallic glasses and crystalline metals in confined geometries. In this work, we experimentally investigated the structure–property relationship in A/C nanolayers containing HCP crystalline layers. CuTi/Ti and CuZr/Zr nanolayers were prepared by magnetron sputtering with layer thicknesses in the range 10–100 nm. The hardness values of the CuTi/Ti and CuZr/Zr nanolayers were close to those of the monolithic CuTi and CuZr, respectively. The hardness remained virtually the same for different layer thicknesses as opposed to CuTi/Cu amorphous/FCC crystalline nanolayers, which exhibit increasing strength with decreasing layer thickness. Confined layer slip model predicts that the effective flow stress of HCP crystalline layers is higher than that of the amorphous layers. As a result, the strength and size effects are governed by the mechanical behavior of the softer amorphous layer.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).CrossRefGoogle Scholar
Misra, A., Hoagland, R.G., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021 (2004).CrossRefGoogle Scholar
Demkowicz, M.J., Hoagland, R.G., and Hirth, J.P.: Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).CrossRefGoogle ScholarPubMed
Wang, J., Zhou, Q., Shao, S., and Misra, A.: Strength and plasticity of nanolaminated materials. Mater. Res. Lett. 5, 1 (2017).CrossRefGoogle Scholar
Li, N., Wang, J., Misra, A., and Huang, J.Y.: Direct observations of confined layer slip in Cu/Nb multilayers. Microsc. Microanal. 18, 1155 (2012).CrossRefGoogle ScholarPubMed
Phillips, M.A., Clemens, B.M., and Nix, W.D.: A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers. Acta Mater. 51, 3157 (2003).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817 (2005).CrossRefGoogle Scholar
Wang, Y., Li, J., Hamza, A.V., and Barbee, T.W.: Ductile crystalline–amorphous nanolaminates. Proc. Natl. Acad. Sci. U. S. A. 104, 11155 (2007).CrossRefGoogle ScholarPubMed
Liu, M.C., Du, X.H., Lin, I.C., Pei, H.J., and Huang, J.C.: Superplastic-like deformation in metallic amorphous/crystalline nanolayered micropillars. Intermetallics 30, 30 (2012).CrossRefGoogle Scholar
Liu, M.C., Huang, J.C., Chou, H.S., Lai, Y.H., Lee, C.J., and Nieh, T.G.: A nanoscaled underlayer confinement approach for achieving extraordinarily plastic amorphous thin film. Scr. Mater. 61, 840 (2009).CrossRefGoogle Scholar
Zhang, J.Y., Liu, Y., Chen, J., Chen, Y., Liu, G., Zhang, X., and Sun, J.: Mechanical properties of crystalline Cu/Zr and crystal–amorphous Cu/Cu–Zr multilayers. Mater. Sci. Eng., A 552, 392 (2012).CrossRefGoogle Scholar
Fan, Z., Xue, S., Wang, J., Yu, K.Y., Wang, H., and Zhang, X.: Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers. Acta Mater. 120, 327 (2016).CrossRefGoogle Scholar
Guo, W., Jägle, E., Yao, J., Maier, V., Korte-Kerzel, S., Schneider, J.M., and Raabe, D.: Intrinsic and extrinsic size effects in the deformation of amorphous CuZr/nanocrystalline Cu nanolaminates. Acta Mater. 80, 94 (2014).CrossRefGoogle Scholar
Ham, B. and Zhang, X.: High strength Mg/Nb nanolayer composites. Mater. Sci. Eng., A 528, 2028 (2011).CrossRefGoogle Scholar
Callisti, M. and Polcar, T.: Combined size and texture-dependent deformation and strengthening mechanisms in Zr/Nb nano-multilayers. Acta Mater. 124, 247 (2017).CrossRefGoogle Scholar
Kabekkodu, S.: ICDD 2016 Powder Diffraction File Inorganic and Organic Data Book (International Centre for Diffraction Data, Pennsylvania, 2016).Google Scholar
Chakraborty, J., Kumar, K., Ranjan, R., Chowdhury, S.G., and Singh, S.R.: Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films. Acta Mater. 59, 2615 (2011).CrossRefGoogle Scholar
Van Heerden, D., Josell, D., and Shechtman, D.: The formation of f.c.c. titanium in titanium–aluminum multilayers. Acta Mater. 44, 297 (1996).CrossRefGoogle Scholar
Banerjee, R., Dregia, S.A., and Fraser, H.L.: Stability of f.c.c. titanium in titanium/aluminum multilayers. Acta Mater. 47, 4225 (1999).CrossRefGoogle Scholar
Özerinç, S., Tai, K., Vo, N.Q., Bellon, P., Averback, R.S., and King, W.P.: Grain boundary doping strengthens nanocrystalline copper alloys. Scr. Mater. 67, 720 (2012).CrossRefGoogle Scholar
Abboud, M., Motallebzadeh, A., Verma, N., and Özerinç, S.: Nanoscratch behavior of metallic glass-crystalline nanolayered composites. JOM 71, 593601 (2019).CrossRefGoogle Scholar
Mao, S., Özerinç, S., King, W.P., Averback, R.S., and Dillon, S.J.: Effect of irradiation damage on the shear strength of Cu–Nb interfaces. Scr. Mater. 90–91, 29 (2014).CrossRefGoogle Scholar
Cordero, Z.C., Knight, B.E., and Schuh, C.A.: Six decades of the Hall–Petch effect—A survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 61, 495 (2016).CrossRefGoogle Scholar
Tabor, D.: The Hardness of Metals (OUP, Oxford, 2000).Google Scholar
Chu, J.P., Jang, J.S.C., Huang, J.C., Chou, H.S., Yang, Y., Ye, J.C., Wang, Y.C., Lee, J.W., Liu, F.X., Liaw, P.K., Chen, Y.C., Lee, C.M., Li, C.L., and Rullyani, C.: Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films 520, 5097 (2012).CrossRefGoogle Scholar
Wang, Z.T., Zeng, K.Y., and Li, Y.: The correlation between glass formation and hardness of the amorphous phase. Scr. Mater. 65, 747 (2011).CrossRefGoogle Scholar
Apreutesei, M., Steyer, P., Joly-Pottuz, L., Billard, A., Qiao, J., Cardinal, S., Sanchette, F., Pelletier, J.M., and Esnouf, C.: Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses. Thin Solid Films 561, 53 (2014).CrossRefGoogle Scholar
Gr[zcirc]eta, B., Stubiĉar, M., Cowlam, N., and Trojko, R.: Crystallization of Cu50Ti50 and Cu66Ti34 metallic glasses. Philos. Mag. A 55, 227 (1987).CrossRefGoogle Scholar
Chou, H.S., Huang, J.C., Chang, L.W., and Nieh, T.G.: Structural relaxation and nanoindentation response in Zr–Cu–Ti amorphous thin films. Appl. Phys. Lett. 93, 191901 (2008).CrossRefGoogle Scholar
Misra, A., Verdier, M., Lu, Y.C., Kung, H., Mitchell, T.E., Nastasi, M., and Embury, J.D.: Structure and mechanical properties of Cu–X (X = Nb, Cr, Ni) nanolayered composites. Scr. Mater. 39, 555 (1998).CrossRefGoogle Scholar
Huang, H. and Spaepen, F.: Tensile testing of free-standing Cu, Ag, and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).CrossRefGoogle Scholar
McKeown, J., Misra, A., Kung, H., Hoagland, R.G., and Nastasi, M.: Microstructures and strength of nanoscale Cu–Ag multilayers. Scr. Mater. 46, 593 (2002).CrossRefGoogle Scholar
Zhang, J.Y., Zhang, X., Wang, R.H., Lei, S.Y., Zhang, P., Niu, J.J., Liu, G., Zhang, G.J., and Sun, J.: Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Mater. 59, 7368 (2011).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., and Kung, H.: Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers. Philos. Mag. A 82, 2935 (2002).CrossRefGoogle Scholar
Pan, D., Inoue, A., Sakurai, T., and Chen, M.W.: Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl. Acad. Sci. U. S. A. 105, 14769 (2008).CrossRefGoogle ScholarPubMed
Fischer-Cripps, A.C.: Nanoindentation, 2nd ed. (Springer-Verlag, New York, 2004).CrossRefGoogle Scholar
Schuster, B.E., Wei, Q., Hufnagel, T.C., and Ramesh, K.T.: Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Mater. 56, 5091 (2008).CrossRefGoogle Scholar
Kuan, S.Y., Chou, H.S., Liu, M.C., Du, X.H., and Huang, J.C.: Micromechanical response for the amorphous/amorphous nanolaminates. Intermetallics 18, 2453 (2010).CrossRefGoogle Scholar
Lu, Y.Y., Kotoka, R., Ligda, J.P., Cao, B.B., Yarmolenko, S.N., Schuster, B.E., and Wei, Q.: The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Mater. 63, 216 (2014).CrossRefGoogle Scholar
Hou, Z.Q., Zhang, J.Y., Li, J., Wang, Y.Q., Wu, K., Liu, G., Zhang, G.J., and Sun, J.: Phase transformation-induced strength softening in Ti/Ta nanostructured multilayers: Coherent interface vs phase boundary. Mater. Sci. Eng., A 684, 78 (2017).CrossRefGoogle Scholar
Liu, M.C., Huang, J.C., Fong, Y.T., Ju, S.P., Du, X.H., Pei, H.J., and Nieh, T.G.: Assessing the interfacial strength of an amorphous–crystalline interface. Acta Mater. 61, 3304 (2013).CrossRefGoogle Scholar
Hoagland, R.G., Kurtz, R.J., and Henager, C.H.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).CrossRefGoogle Scholar
Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1 (1994).CrossRefGoogle Scholar
Bernstein, N., Aziz, M.J., and Kaxiras, E.: Amorphous-crystal interface in silicon: A tight-binding simulation. Phys. Rev. B 58, 4579 (1998).CrossRefGoogle Scholar
Mara, N., Sergueeva, A., Misra, A., and Mukherjee, A.K.: Structure and high-temperature mechanical behavior relationship in nano-scaled multilayered materials. Scr. Mater. 50, 803 (2004).CrossRefGoogle Scholar
Zhu, Y., Li, Z., Huang, M., and Liu, Y.: Strengthening mechanisms of the nanolayered polycrystalline metallic multilayers assisted by twins. Int. J. Plast. 72, 168 (2015).CrossRefGoogle Scholar
Gong, J., Benjamin Britton, T., Cuddihy, M.A., Dunne, F.P.E., and Wilkinson, A.J.: 〈a〉 Prismatic, 〈a〉 basal, and 〈c + a〉 slip strengths of commercially pure Zr by micro-cantilever tests. Acta Mater. 96, 249 (2015).CrossRefGoogle Scholar
Gong, J. and Wilkinson, A.J.: A microcantilever investigation of size effect, solid-solution strengthening and second-phase strengthening for 〈a〉 prism slip in alpha-Ti. Acta Mater. 59, 5970 (2011).CrossRefGoogle Scholar
Li, X. and Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11 (2002).CrossRefGoogle Scholar