Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T19:09:30.268Z Has data issue: false hasContentIssue false

Size-dependent theoretical tensile strength and other mechanical properties of [001] oriented Au, Ag, and Cu nanowires

Published online by Cambridge University Press:  03 March 2011

F. Ma
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
K.W. Xu*
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A uniaxial tensile loading process was simulated on rectangular [001] oriented single-crystal Au, Ag, and Cu nanowires using the modified embedded atom method. The calculated theoretical tensile strength as well as elastic modulus and “yield strength” increases with decreasing wire width almost logarithmically, which is qualitatively consistent with relevant experimental results. According to the present observed linear relationship among these three parameters, we think, the size dependent mechanical behaviors in nanowires may be due to the enhanced attraction between atoms, which is caused by the accumulation of electron charges along wire axial direction.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kondo, Y., Takayanagim, K.: Gold nanobridge stabilized by surface structure. Phys. Rev. Lett. 79, 3455 (1997).CrossRefGoogle Scholar
2.Kondo, Y., Takayanagi, K.: Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606 (2000).CrossRefGoogle ScholarPubMed
3.Kondo, Y., Ru, Q., Takayanagi, K.: Thickness induced structural phase transition of gold nanofilm. Phys. Rev. Lett. 82, 751 (1999).CrossRefGoogle Scholar
4.Hasmy, A., Medina, E.: Thickness induced structural transition in suspended fcc metal nanofilms. Phys. Rev. Lett. 88, 096103 (2002).CrossRefGoogle ScholarPubMed
5.Emery, R.D., Povirk, G.L.: Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater. 51, 2079 (2003).CrossRefGoogle Scholar
6.Agrait, N., Rubio, G., Vieira, S.: Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995 (1995).CrossRefGoogle ScholarPubMed
7.Rubio, G., Agrait, N., Vieira, S.: Atomic-sized metallic contacts: Mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302 (1996).CrossRefGoogle ScholarPubMed
8.Rubio, G., Bahn, S.R., Agrait, N., Jacobsen, K.W., Vieira, S.: Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001).CrossRefGoogle Scholar
9.Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-size particles, wires, and films. J. Mech. Phys. Solids 53, 1827 (2005).Google Scholar
10.Vinci, R.P., Vlassak, J.J.: Mechanical behavior of thin films. Annu. Rev. Mater. Sci. 26, 431 (1996).CrossRefGoogle Scholar
11.Bahr, D.F., Kramer, D.E., Gerberich, W.W.: Non-linear mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
12.Gouldstone, A., Koh, H.J., Zeng, K.Y., Giannakopoulos, A.E., Suresh, S.: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).CrossRefGoogle Scholar
13.Woodcock, C.L., Bahr, D.F.: Plastic zone evolution around small scale indentations. Scripta Mater. 43, 783 (2000).Google Scholar
14.de Fuente, O.R. la, Zimmerman, J.A., Gonzalez, M.A., De Figuera, J. la, Hamilton, J.C., Pai, W.W., Rojo, J.M.: Dislocation emission around nanoindentations on a (001) fcc metal surface studied by scanning tunneling microscopy and atomistic simulations. Phys. Rev. Lett. 88, 036101 (2002).CrossRefGoogle Scholar
15.Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).CrossRefGoogle ScholarPubMed
16.Baskes, M.I., Johnson, R.A.: Modified embedded atom potentials for HCP metals. Modell. Simul. Mater. Sci. Eng. 2, 147 (1994).CrossRefGoogle Scholar
17.Rao, C.N.R., Deepark, F.L., Gundiah, G., Govindaraj, A.: Inorganic nanowires. Prog. Solid State Chem. 31, 5 (2003).CrossRefGoogle Scholar
18.Friák, M., Šob, M., Vitek, V.: Ab initio study of the ideal tensile strength and mechanical stability of transition-metal disilicides. Phys. Rev. B 68, 184101 (2003).CrossRefGoogle Scholar
19.Lee, B.J., Baskes, M.I.: Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62, 8564 (2000).CrossRefGoogle Scholar
20.Lee, B.J., Shim, J.H., Baskes, M.I.: Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified atom method. Phys. Rev. B 68, 144112 (2003).CrossRefGoogle Scholar
21.Batirev, I.G., Herger, W., Rennert, P., Stepanyuk, V.S., Oguchi, T., Katsnelson, A.A., Leiro, J.A., Lee, K.H.: Surface atomic forces and multilayer relaxation of W(001), W(110) and Fe/W(110). Surf. Sci. 417, 151 (1998).CrossRefGoogle Scholar
22.Gall, K., Diao, J.K., Dunn, M.L.: The strength of gold nanowires. Nano Lett. 4, 2431 (2004).Google Scholar