Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T10:35:43.617Z Has data issue: false hasContentIssue false

Size-dependent structural phase transition of face-centered-cubic metal nanowires

Published online by Cambridge University Press:  03 March 2011

F. Ma
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
K.W. Xu*
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Taking Au as an example, we have investigated the epitaxial bain paths of 〈001〉 oriented face-centered-cubic metal nanowires. It demonstrates that there are one stable and one metastable phase, having the lattice constant ratio c/a of about 0.6 and 1.0, respectively. Even without any external stimuli, the surface-tension-induced intrinsic stress in the interior may drive the nanowires to phase transform spontaneously for surface-energy minimization. However, this structural transition depends on the feature sizes of the nanowires. Specifically, only when the cross-section areas are reduced to 4.147 nm2 or so can the surface energy and the intrinsic stress satisfy the thermodynamic and kinetic conditions simultaneously.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Beckman, R., Johnston-Halperin, E., Luo, Y., Green, J.E., and Heath, J.R.: Bridging dimensions: Demultiplexing ultrahigh-density nanowire circuits. Science 310, 465 (2005).CrossRefGoogle ScholarPubMed
2Huang, Y., Duan, X.F., Wei, Q.Q., and Lieber, C.M.: Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630 (2001).CrossRefGoogle ScholarPubMed
3Huang, Y., Duan, X.F., Cui, Y., Lauhon, L.J., Kim, K.H., and Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).CrossRefGoogle ScholarPubMed
4Craighead, H.G.: Nanoelectromechanical systems. Science 290, 1532 (2000).CrossRefGoogle ScholarPubMed
5Cui, Y., Wei, Q.Q., Park, H., and Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289 (2001).CrossRefGoogle ScholarPubMed
6Melosh, N.A., Boukai, A., Diana, F., Gerardot, B., Badolato, A., Petroff, P.M., and Heath, J.R.: Ultrahigh-density nanowire lattices and circuits. Science 300, 112 (2003).CrossRefGoogle ScholarPubMed
7Kouklin, N.: Self-assembled network of carbon nanotubes synthesized by chemical vapor deposition in alumina porous template. Appl. Phys. Lett. 87, 203105 (2005).CrossRefGoogle Scholar
8Fahlbusch, S., Mazerolle, S., Breguet, J.M., Steinecker, A., Agnus, J., Perez, R., and Michler, J.: Nanomanipulation in a scanning electron microscope. J. Mater. Proc. Technol. 167, 371 (2005).CrossRefGoogle Scholar
9Jeong, S.H., Hwang, H.Y., and Hwang, S.K.: Carbon nanotubes based on anodic aluminum oxide nano-template. Carbon 42, 2073 (2004).CrossRefGoogle Scholar
10Dick, K.A., Deppert, K., Larsson, M.W., Martensson, T., Seifert, W., Wallenberg, L.R., and Samuelson, L.: Synthesis of branched “nanotrees” by controlled seeding of multiple branching events. Nat. Mater. 3, 380 (2004).CrossRefGoogle ScholarPubMed
11Jeong, S.H. and Lee, K.H.: Fabrication of the aligned and patterned carbon nanotube field emitters using the anodic aluminum oxide nano-template on a Si wafer. Synth. Met. 139, 385 (2003).CrossRefGoogle Scholar
12Shimizu, T.: Bottom-up synthesis and morphological control of high-axial-ratio nanostructures through molecular self-assembly. Polym. J. 35, 1 (2003).CrossRefGoogle Scholar
13Shimomura, M. and Sawadaishi, T.: Bottom-up strategy of materials fabrication: A new trend in nanotechnology of soft materials. Curr. Opin. Coll. Int. Sci. 6, 11 (2001).CrossRefGoogle Scholar
14Zhang, X., Sun, C., and Fang, N.: Manufacturing at nanoscale: Top-down, bottom-up and system engineering. J. Nanopart. Res. 6, 125 (2004).CrossRefGoogle Scholar
15Nagase, T., Gamo, K., Kubota, T., and Mashiko, S.: Direct fabrication of nano-gap electrodes by focused ion beam etching. Thin Solid Films 499, 279 (2006).CrossRefGoogle Scholar
16Samukawa, S.: Ultimate top-down etching processes for future nanoscale devices: Advanced neutral-beam etching. Jpn. J. Appl. Phys. Part I 45, 2395 (2006).CrossRefGoogle Scholar
17Velez, M.H.: Nanowires and 1D arrays fabrication: An overview. Thin Solid Films 495, 51 (2006).CrossRefGoogle Scholar
18Alexe, M., Harnagea, C., Visinoiu, A., Pignolet, A., Hesse, D., and Gosele, U.: Patterning and switching of nano-size ferroelectric memory cells. Scripta Mater. 44, 1175 (2001).CrossRefGoogle Scholar
19Dingreville, R., Qu, J.M., and Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53, 1827 (2005).CrossRefGoogle Scholar
20Nanda, K.K., Maisels, A., Kruis, F.E., Fissan, H., and Stappert, S.: Higher surface energy of free nanoparticles. Phys. Rev. Lett. 91, 106102 (2003).CrossRefGoogle ScholarPubMed
21Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1 (1994).CrossRefGoogle Scholar
22Kondo, Y. and Takayanagi, K.: Gold nanobridge stabilized by surface structure. Phys. Rev. Lett. 79, 3455 (1997).CrossRefGoogle Scholar
23Kondo, Y. and Takayanagi, K.: Synthesis and characterization of helical multi-shell gold nanowires. Science 289, 606 (2000).CrossRefGoogle ScholarPubMed
24Kondo, Y., Ru, Q., and Takayanagi, K.: Thickness induced structural phase transition of gold nanofilm. Phys. Rev. Lett. 82, 751 (1999).CrossRefGoogle Scholar
25Diao, J.K., Gall, K., and Dunn, M.L.: Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656 (2003).CrossRefGoogle ScholarPubMed
26Baskes, M.I.: Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B 46, 2727 (1992).CrossRefGoogle ScholarPubMed
27Baskes, M.I. and Johnson, R.A.: Modified embedded atom potentials for HCP metals. Modell. Simul. Mater. Sci. Eng. 2, 147 (1994).CrossRefGoogle Scholar
28Schwarz, K., Blaha, P., and Madsen, G.K.H.: Electronic-structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71 (2002).CrossRefGoogle Scholar
29Daw, M.S. and Baskes, M.I.: Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
30Daw, M.S. and Baskes, M.I.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
31Foiles, S.M., Baskes, M.I., and Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33, 7983 (1986).CrossRefGoogle ScholarPubMed
32Adams, J.B., Foiles, S.M., and Wolfer, W.G.: Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the embedded atom method. J. Mater. Res. 4, 102 (1989).CrossRefGoogle Scholar
33Foiles, S.M. and Daw, M.S.: Application of the embedded-atom method to Ni3Al. J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
34Zhou, L., Wei, X.Q., and Zhou, N.G.: Lattice distortion and thermal stability of nano-crystalline copper. Comp. Mater. Sci. 30, 314 (2004).CrossRefGoogle Scholar
35Horstemeyer, M.F., Baskes, M.I., and Plimpton, S.J.: Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 49, 4363 (2001).CrossRefGoogle Scholar
36Wu, H.A.: Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Comp. Mater. Sci. 31, 287 (2004).CrossRefGoogle Scholar
37Wu, H.A.: Molecular dynamics study of the mechnics of metal nanowires at finite temperature. Eur. J. Mech. A-Solids 25, 370 (2006).CrossRefGoogle Scholar
38Kadau, K., Entel, P., and Lomdahl, P.S.: Molecular-dynamics study of martensitic transformations in sintered Fe-Ni nanoparticles. Comput. Phys. Commun. 147, 126 (2002).CrossRefGoogle Scholar
39Daw, M.S. and Foiles, S.M.: Order-disorder transition of Au and Pt (110) surfaces: The significance of relaxations and vibrations. Phys. Rev. Lett. 59, 2756 (1987).CrossRefGoogle ScholarPubMed
40Dodson, M.W.: Simulation of Au(100) reconstruction by use of the embedded-atom method. Phys. Rev. B 35, 880 (1987).CrossRefGoogle ScholarPubMed
41Foiles, S.M.: Calculation of the surface segregation of Ni–Cu alloys with the use of the embedded-atom method. Phys. Rev. B 32, 7685 (1985).CrossRefGoogle ScholarPubMed
42Daw, M.S. and Hatcher, R.D.: Application of the embedded atom method to phonons in transition metals. Solid State Commun. 56, 697 (1985).CrossRefGoogle Scholar
43Marcus, P.M. and Alippi, P.: Tetragonal states from epitaxial strain on metal films. Phys. Rev. B 57, 1971 (1998).CrossRefGoogle Scholar
44Ackland, G.J. and Finnis, M.W.: Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals. Philos. Mag. A 54, 301 (1986).CrossRefGoogle Scholar
45Diao, J.K., Gall, K., Dunn, M.L., and Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54, 643 (2006).CrossRefGoogle Scholar
46Friák, M., Šob, M., and Vitek, V.: Ab initio study of the ideal tensile strength and mechanical stability of transition-metal disilicides. Phys. Rev. B 68, 184101 (2003).CrossRefGoogle Scholar
47Ji, X.Z., Tian, Y., and Jona, F.: Tetragonal states of palladium II: Experiment. Phys. Rev. B 65, 155404 (2002).CrossRefGoogle Scholar