Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T12:33:29.733Z Has data issue: false hasContentIssue false

Size-dependent strength in nanolaminate metallic systems

Published online by Cambridge University Press:  23 May 2011

Ioannis N. Mastorakos*
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
Aikaterini Bellou
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
David F. Bahr
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
Hussein M. Zbib
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effect of layer thickness on the hardness of nanometallic material composites with both coherent and incoherent interfaces was investigated using nanoindentation. Then, atomistic simulations were performed to identify the critical deformation mechanisms and explain the macroscopic behavior of the materials under investigation. Nanocomposites of different individual layer thicknesses, ranging from 1–30 nm, were manufactured and tested in nanoindentation. The findings were compared to the stress–strain curves obtained by atomistic simulations. The results reveal the role of the individual layer thickness as the thicker structures exhibit somehow different behavior than the thinner ones. This difference is attributed to the motion of the dislocations inside the layers. However, in all cases the hybrid structure was the strongest, implying that a particular improvement to the mechanical properties of the coherent nanocomposites can be achieved by adding a body-centered cubic layer on top of a face-centered cubic bilayer.

Type
Invited feature paper
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Misra, A., Demkowicz, M.J., Wang, J., and Hoagland, R.G.: The multiscale modeling of plastic deformation in metallic nanolayered composites. JOM 60(4), 39 (2008).CrossRefGoogle Scholar
2.Hoagland, R.G., Kurtz, R.J., and Henager, C.H. Jr.: Slip resistance of interfaces and the strength of metallic multilayer composites. Scr. Mater. 50, 775 (2004).CrossRefGoogle Scholar
3.Wang, J., Hoagland, R.G., and Misra, A.: Mechanics of nanoscale metallic multilayers: From atomic-scale to micro-scale. Scr. Mater. 60(12), 1067 (2009).CrossRefGoogle Scholar
4.Tokarz, A., Fraczek, T., Balaga, Z., and Nitkiewicz, Z.: Structure, hardness and thermal stability of electrodeposited Cu/Ni nanostructured multilayers. Rev. Adv. Mater. Sci. 15(3), 247 (2007).Google Scholar
5.Misra, A., Kung, H., Hammon, D., Hoagland, R.G., and Nastasi, M.: Damage mechanisms in nanolayered metallic composites. Int. J. Damage Mech. 12, 365 (2003).CrossRefGoogle Scholar
6.Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 4817 (2005).CrossRefGoogle Scholar
7.Misra, A. and Hoagland, R.G.: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20(8), 2046 (2005).CrossRefGoogle Scholar
8.Schuh, C.A., Nieh, T.G., and Yamasaki, T.: Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 46(10), 735 (2002).CrossRefGoogle Scholar
9.Conrad, H. and Narayan, J.: Mechanisms for grain size hardening and softening in Zn. Acta Mater. 50(20), 5067 (2002).CrossRefGoogle Scholar
10.Yip, S.: Nanocrystals—The strongest size. Nature 391(6667), 532 (1998).CrossRefGoogle Scholar
11.Kim, H.S., Estrin, Y., and Bush, M.B.: Plastic deformation behaviour of fine-grained materials. Acta Mater. 48(2), 493 (2000).Google Scholar
12.Wang, Y.B., Li, B.Q., Sui, M.L., and Mao, S.X.: Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl. Phys. Lett. 92(1), 011903 (2008).CrossRefGoogle Scholar
13.Nix, W.D.: Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39(4/5), 545 (1998).CrossRefGoogle Scholar
14.Akasheh, F., Zbib, H.M., Hirth, J.P., Hoagland, R.G., and Misra, A.: Dislocation dynamics analysis of dislocation intersections in nanoscale multilayer metallic composites. J. Appl. Phys. 101, 084314 (2007).CrossRefGoogle Scholar
15.Freund, L.B.: The stability of a dislocation threading a strained layer on a substrate. J. Appl. Mech. Techol Phys. 54(3), 553 (1987).Google Scholar
16.Hoagland, R.G., Mitchell, T.E., Hirth, J.P., and Kung, H.: On the strengthening effects of interfaces in multilayer fcc metallic composites. Philos. Mag. A 82(4), 643 (2002).Google Scholar
17.Mastorakos, I.N., Zbib, H.M., and Bahr, D.F.: Deformation mechanisms and strength in metallic nanolaminate composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94 (17), 054117 (2009).CrossRefGoogle Scholar
18.Overman, N.R., Overman, C.T., Zbib, H.M., and Bahr, D.F.: Yield and deformation in biaxially stressed multilayer metallic thin films. J. Eng. Mater. Techol. 131(4), 041203 (2009).CrossRefGoogle Scholar
19.Mastorakos, I.N., Abdolrahim, N., and Zbib, H.M.: Deformation mechanisms in composite nano-layered metallic and nanowire structures. Int. J. Mech. Sci. 52, 295 (2010).Google Scholar
20.Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117(1), (1995).CrossRefGoogle Scholar
21.Daw, M. and Baskes, M.: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1983).Google Scholar
22.Voter, A.F. and Chen, S.P.: Accurate Interatomic Potentials for Ni, Al and Ni3Al, in Characterization of Defects in Materials, edited by Siegel, R.W., Weertman, J.R., and Sinclair, R. (Mater. Res. Soc. Symp. Proc. 82, Pittsburgh, PA, 1987), p. 175.Google Scholar
23.Johnson, R.A.: Alloy models with the embedded atom method. Phys. Rev. B 39(17), 12554 (1989).CrossRefGoogle ScholarPubMed
24.Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., and Kress, J.D.: Structural stability and lattice defects in copper: Ab initio, tight-binding and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).CrossRefGoogle Scholar
25.Johnson, R.A. and Oh, D.J.: Analytic embedded atom method model for bcc. J. Mater. Res. 4(5), 1195 (1989).Google Scholar
26.Zhang, Q., Lai, W.S., and Liu, B.X.: Atomic structure and physical properties of Ni-Nb amorphous alloys determined by an n-body potential. J. Non-Cryst. Solids 261, 137 (2000).CrossRefGoogle Scholar
27.Demkowicz, M.J. and Hoagland, R.G.: Structure of Kurdjumov-Sachs interfaces in simulations of a copper-niobium bilayer. J. Nucl. Mater. 372, 45 (2008).Google Scholar
28.Melchionna, S., Ciccotti, G., and Holian, B.L.: Hoover NPT dynamics for systems varying in shape and size. Mol. Phys. 78, 533 (1993).CrossRefGoogle Scholar
29.Henager, C.H. Jr., Kuntz, R.J., and Hoagland, R.G.: Interactions of dislocations with disconnections in fcc metallic nanolayered materials. Philos. Mag. 84(22), 2277 (2004).CrossRefGoogle Scholar
30.Hoagland, R.G., Hirth, J.P., and Misra, A.: On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos. Mag. 86(23), 3537 (2006).CrossRefGoogle Scholar
31.Anderson, P.M., Bingert, J.F., Misra, A., and Hirth, J.P.: Rolling textures in nanoscale Cu/Nb multilayers. Acta Mater. 51(20), 6059 (2003).Google Scholar
32.Misra, A., Hirth, J.P., and Kung, H.: Single-dislocation-based strengthening mechanisms in nanoscale metalic multilayers. Philos. Mag. A 82(16), 2935 (2002).CrossRefGoogle Scholar
33.Lu, L., Chen, X., Huang, X., and Lu, K.: Revealing the maximum strength in nanotwinned copper. Science 3232, 607 (2009).Google Scholar
34.Nyilas, K., Misra, A., and Ungar, T.: Micro-strains in cold rolled Cu–Nb nanolayered composites determined by X-ray line profile analysis. Acta Mater. 54(3), 751 (2005).Google Scholar
35.Mara, N.A., Bhattacharyya, D., Hoagland, R.G., and Misra, A.: Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr. Mater. 58(10), 874 (2008).Google Scholar
36.Bellou, A., Overman, C.T., Zbib, H.M., Bahr, D.F., and Misra, A.: Strength and strain hardening behavior of Cu-based bilayers and trilayers. Scr. Mater. 64, 641 (2011).CrossRefGoogle Scholar