Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T12:53:40.821Z Has data issue: false hasContentIssue false

Single-crystalline Tungsten Nanoparticles Produced by Thermal Decomposition of Tungsten Hexacarbonyl

Published online by Cambridge University Press:  31 January 2011

Martin H. Magnusson*
Affiliation:
Solid State Physics, Lund University, Box 118, S-221 00 Lund, Sweden
Knut Deppert
Affiliation:
Solid State Physics, Lund University, Box 118, S-221 00 Lund, Sweden
Jan-Olle Malm
Affiliation:
Inorganic Chemistry 2, Lund University, Box 124, S-221 00 Lund, Sweden
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanometer-sized particles of W are of interest in semiconductor device research, where such particles may store electrons inside heteroepitaxially defined structures. In this paper, we present results concerning W particles produced by thermal decomposition of tungsten hexacarbonyl. By the described method, it was possible to produce size-selected, single-crystalline W particles in the size range between 15 and 60 nm. The sintering behavior of the particles was studied between ambient temperatures and 1900 °C. The particle morphology and structure were examined with high-resolution transmission electron microscopy and electron diffraction techniques. Particles sintered at the highest temperatures typically were single crystals, with well-developed facets. Some problems concerning a yield reducing charging mechanism are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wernersson, L.E., Litwin, A., Samuelson, L., and Seifert, W., Jpn. J. Appl. Phys. 36, L1628 (1997).CrossRefGoogle Scholar
2.Kawakami, Y., Seto, T., and Ozawa, E., J. Jpn. Inst. Metals 63, 1101 (1999).CrossRefGoogle Scholar
3.Patokin, A.P. and Sagalovich, V.V., Russ. J. Phys. Chem. 50, 370 (1976).Google Scholar
4.Vogt, G.J., J. Vac. Sci. Technol. 20, 1336 (1982).CrossRefGoogle Scholar
5.Diem, M., Fisk, M., and Goldman, J., Thin Solid Films 107, 39 (1983).CrossRefGoogle Scholar
6.Haigh, J., Burkhardt, G., and Blake, K., J. Cryst. Growth 155, 3 (1995).CrossRefGoogle Scholar
7.Haigh, J., Chemtronics 1, 134 (1986).Google Scholar
8.Nambu, Y., Morishige, Y., and Kishida, S., Appl. Phys. Lett. 56, 2581 (1990).CrossRefGoogle Scholar
9.Okuyama, F., J. Cryst. Growth 49, 531 (1980).CrossRefGoogle Scholar
10.Hoyle, P.C., Ogasawara, M., Cleaver, J.R.A, and Ahmed, H., Appl. Phys. Lett. 62, 3043 (1993).CrossRefGoogle Scholar
11.Vollath, D. and Szabo, D.V., Mater. Lett. 35, 3 (1998).CrossRefGoogle Scholar
12.Knutson, E.O. and Whitby, K.T., J. Aerosol Sci. 6, 443 (1975).CrossRefGoogle Scholar
13.Winklmayer, W., Reischl, G.P., Lindner, A.O., and Berner, A., J. Aerosol Sci. 22, 289 (1991).CrossRefGoogle Scholar
14.Burtscher, H., Scherrer, L., Siegmann, H.C., Schmidt-Ott, A., and Federer, B., J. Appl. Phys. 53, 3787 (1982).CrossRefGoogle Scholar
15.Deppert, K., Schmidt, F., Krinke, T., Dixkens, J., and Fissan, H., J. Aerosol Sci. 27, S151 (1996).CrossRefGoogle Scholar
16.Grau, G.G., in Mechanischthermische Konstanten für das Gleichgewicht heterogener Systeme, Landolt-Börnstein, edited by Schäfer, K. and Lax, E. (Springer, Berlin, 1960), Vol. II/2a, p. 45.Google Scholar
17.CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1997), p. 4124.Google Scholar
18.Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (Wiley, New York, 1982), p. 424.Google Scholar
19.Schmidt-Ott, A., J. Aerosol Sci. 19, 553 (1987).CrossRefGoogle Scholar
20.Shimada, M., Seto, T., and Okuyama, K., J. Chem. Eng. Jpn. 27, 795 (1994).CrossRefGoogle Scholar
21.Magnusson, M.H., Deppert, K., Malm, J-O., Bovin, J-O., and Samuelson, L., J. Nanoparticle Res. 1, 243 (1999).CrossRefGoogle Scholar
22.Basavaiah, S. and Pollock, S.R., J. Appl. Phys. 39, 5548 (1968).CrossRefGoogle Scholar
23.Schmidt-Ott, A. (personal communication).Google Scholar
24.Ahonen, P. and Kauppinen, E. (personal communication).Google Scholar