Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T15:41:52.377Z Has data issue: false hasContentIssue false

Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2

Published online by Cambridge University Press:  31 January 2011

S. E. Pratsinis*
Affiliation:
Particle Technology Laboratory, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8092 Zürich, Switzerland
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanostructured gold/titania and gold/silica particles with up to 4 wt% Au were made by a single-step process in a spray flame reactor. Gold(III)-chloride hydrate and titania- or silica-based metalorganic precursors were mixed in a liquid fuel solution, keeping concentrations in the flame and overall combustion enthalpy constant. The powders were characterized by x-ray diffraction, transmission electron microscopy, Brunauer–Emmett–Teller, and ultraviolet–visible analysis. The titania or silica specific surface area and the crystalline structure of titania were not affected by the presence of gold in the flame. Furthermore the size of the gold deposits was independent of the metal oxide support (TiO2 or SiO2) and its specific surface area (100 and 320 m2/g, respectively). The gold nanoparticles were nonagglomerated, spherical, mostly single crystalline, and well dispersed on the metal oxide support. Depending on the Au weight fraction (1, 2, and 4 wt%) the Au nanoparticles' mass mean diameter was 3, 7, and 15 nm, respectively, on both titania and silica. The particles showed surface plasmon absorption bands in the ultraviolet–visible region, which is typical for nano-sized gold. This absorption band was red shifted in the case of the titania support, while no shift occurred with the silica support.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Moriarty, P., Rep. Prog. Phys. 64, 297 (2001).CrossRefGoogle Scholar
2.Bond, G.C., Catal. Today 72, 5 (2002).CrossRefGoogle Scholar
3.Hutchings, G.J., Catal. Today 72, 11 (2002).CrossRefGoogle Scholar
4.Haruta, M., Catal. Today 36, 153 (1997).CrossRefGoogle Scholar
5.Pratsinis, S.E., Prog. Energy Combust. Sci. 24, 197 (1998).CrossRefGoogle Scholar
6.Magnusson, M.H., Deppert, K., Malm, J.O., Bovin, J.O., and Samuelson, L., J. Nanoparticle Res. 1, 243 (1999).CrossRefGoogle Scholar
7.Nakaso, K., Shimada, M., Okuyama, K., and Deppert, K., J. Aerosol Sci. 33, 1061 (2002).Google Scholar
8.Johannessen, T. and Koutsopoulos, S., J. Catal. 205, 404 (2002).Google Scholar
9.Kammler, H.K., Ma¨dler, L., and Pratsinis, S.E., Chem. Eng. Technol. 24, 583 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
10.Sokolowski, M., Sokolowska, A., Michalski, A., and Gokieli, B., J. Aerosol Sci. 8, 219 (1977).CrossRefGoogle Scholar
11.Laine, R.M., Baranwal, R., Hinklin, T., Treadwell, D., Sutorik, A., Bickmore, C., Waldner, K., and Neo, S.S., Key Eng. Mater. 159–160, 17 (1999).Google Scholar
12.Stark, W.J., Pratsinis, S.E., and Baiker, A., J. Catal. 203, 516 (2001).CrossRefGoogle Scholar
13.Mädler, L., Kammler, H.K., Mueller, R., and Pratsinis, S.E., J. Aerosol Sci. 33, 369 (2002).Google Scholar
14.Mädler, L., Stark, W.J., and Pratsinis, S.E., J. Mater. Res. 17, 1356 (2002).CrossRefGoogle Scholar
15.Cheary, R.W. and Coelho, A.A., J. Appl. Crystallogr. 31, 851 (1998).CrossRefGoogle Scholar
16.Hinds, W.C., Aerosol Technology, 2nd ed. (John Wiley & Sons, Inc., New York, 1999).Google Scholar
17.Turkevich, J., Garton, G., and Stevenson, P.C., J. Colloid Sci. Suppl. 1, S26 (1954).CrossRefGoogle Scholar
18.Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, 1st paperback ed. (John Wiley & Sons, New York, 1998).CrossRefGoogle Scholar
19.Johnson, P.B. and Christy, R.W., Phys. Rev. B 6, 4370 (1972).CrossRefGoogle Scholar
20.Barnes, M.C., Kim, D.Y., Ahn, H.S., Lee, C.O., and Hwang, N.M., J. Cryst. Growth 213, 83 (2000).CrossRefGoogle Scholar
21.Koch, W. and Friedlander, S.K., Part. Part. Syst. Charact. 8, 86 (1991).CrossRefGoogle Scholar
22.Zhao, S.Y., Chen, S.H., Wang, S.Y., and Quan, Z.L., J. Colloid Interface Sci. 221, 161 (2000).CrossRefGoogle Scholar
23.Liz-Marzan, L.M., Giersig, M., and Mulvaney, P., Langmuir 12, 4329 (1996).CrossRefGoogle Scholar