Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T05:35:36.038Z Has data issue: false hasContentIssue false

Silicon-germanium films deposited by low-frequency plasma-enhanced chemical vapor deposition: Effect of H2 and Ar dilution

Published online by Cambridge University Press:  01 January 2006

A. Kosarev*
Affiliation:
Institute National for Astrophysics, Optics and Electronics, INAOE, CP 7200, Puebla, Mexico
A. Torres
Affiliation:
Institute National for Astrophysics, Optics and Electronics, INAOE, CP 7200, Puebla, Mexico
Y. Hernandez
Affiliation:
Institute National for Astrophysics, Optics and Electronics, INAOE, CP 7200, Puebla, Mexico
R. Ambrosio
Affiliation:
Institute National for Astrophysics, Optics and Electronics, INAOE, CP 7200, Puebla, Mexico
C. Zuniga
Affiliation:
Institute National for Astrophysics, Optics and Electronics, INAOE, CP 7200, Puebla, Mexico
T.E. Felter
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550
R. Asomoza
Affiliation:
Centro de Investigación y de Estudios Avanzado del Instituto Politecnico Nacional, Mexico, D.F. 07360
Y. Kudriavtsev
Affiliation:
Centro de Investigación y de Estudios Avanzado del Instituto Politecnico Nacional, Mexico, D.F. 07360
R. Silva-Gonzalez
Affiliation:
Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, Puebla, Pue., C.P. 72570, Mexico
E. Gomez-Barojas
Affiliation:
CIDS-IC, Benemerita Universidad Autonoma de Puebla, Puebla, Pue. C.P. 72000, Mexico
A. Ilinski
Affiliation:
Benemerita Universidad Autonoma de Puebla, Puebla, Puebla 72050, Mexico
A.S. Abramov
Affiliation:
A.F. Ioffe Phys.-Technical Institute, St.-Petersburg 194021, Russia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We have studied structure and electrical properties of Si1−YGeY:H films deposited by low-frequency plasma-enhanced chemical vapor deposition over the entire composition range from Y = 0 to Y = 1. The deposition rate of the films and their structural and electrical properties were measured for various ratios of the germane/silane feed gases and with and without dilution by Ar and by H2. Structure and composition was studied by Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS), and Fourier transform infrared (FTIR) spectroscopy. Surface morphology was characterized by atomic force microscopy (AFM). We found that the deposition rate increased with Y, maximizing at Y = 1 without dilution. The relative rate of Ge and Si incorporation is affected by dilution. Hydrogen preferentially bonds to silicon. Hydrogen content decreases for increasing Y. In addition, optical measurements showed that as Y goes for 0 to 1, the Fermi level moves from mid gap to the conduction band edge; i.e., the films become more n-type. No correlation was found between the pre-exponential and the activation energy of conductivity. The behavior of the conductivity γ-factor suggests a local minimum in the density of states at E ≈ 0.33 eV for the films grown with or without H-dilution and E ≈ 0.25 eV for the films with Ar dilution.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rath, J.K., Tichelaar, F.D. and Schropp, R.E.I.: Heterogeneous growth of microcrystalline silicon germanium. Sol. Energy Mater. Sol. Cells 74, 533 (2002).CrossRefGoogle Scholar
2.Isomura, M., Nakahata, K., Shima, M., Taira, S., Wakisaka, K., Tanaka, M. and Kiyama, S.: Microcrystalline silicon–germanium solar cells for multi-junction structures. Sol. Energy Mater. Sol. Cells 74, 519 (2002).CrossRefGoogle Scholar
3.Krause, M., Stiebig, H., Carius, R. and Wagner, H.: Microcrystalline germanium photodetectors, in Amorphous and Heterogeneous Silicon-Based Films—2001, edited by Stutzman, M., Boyce, J.B., Cohen, J.D., Collins, R.W., and Hanna, J. (Mater. Res. Soc. Symp. Proc. 664 Warrendale, PA, 2001), p. A26.5.Google Scholar
4.Masini, G., Cencelli, V., Colace, L., DeNotaristefani, F. and Assanto, G.: A germanium photodetector array for the near infrared monolithically integrated with silicon CMOS readout electronics. Physica E 16, 614 (2003).CrossRefGoogle Scholar
5.Ambrosio, R., Torres, A., Kosarev, A., Heredia, A. and Garcia, M.: Amorphous Si1−yGey:H,F films obtained by low frequency PECVD for uncooled microbolometers, in Amorphous and Nanocrystalline Silicon Science and Technology—2004, edited by Ganguly, G., Kondo, M., Schiff, E.A., Carius, R., and R. Biswas. (Mater. Res. Soc. Symp. Proc. 808 Warrendale, PA, 2004), p. A4.29.Google Scholar
6.Torres, A., Kosarev, A., Garcia, M.L. and Ambrosio, R.: Uncooled micro-bolometer based on amorphous germanium film. J. Non-Cryst. Solids 329, 179 (2003).CrossRefGoogle Scholar
7.Garcia, M., Ambrosio, R., Torres, A. and Kosarev, A.: IR bolometers based on amorphous silicon germanium alloys. J. Non-Cryst. Solids 338–340, 744 (2004).CrossRefGoogle Scholar
8.Jordan, W.B. and Wagner, S.: Nanocrystalline germanium p-i-n structures, in Amorphous and Nanocrystalline Silicon Science and Technology—2004, edited by Ganguly, G., Kondo, M., Schiff, E.A., Carius, R., and Biswas, R. (Mater. Res. Soc. Symp. Proc. 808 Warrendale, PA, 2004), p. A9.47.Google Scholar
9.Luft, W. and Tsuo, Y.S.: Hydrogenated Amorphous Silicon Alloy Deposition Processes (Marcel Dekker, New York 1993).Google Scholar
10.Searle, T. Properties of amorphous silicon and its alloys. EMIS Datareviews Series No. 19, INSPEC, The Institution of Electrical Engineers, London, United Kingdom, 1998.Google Scholar
11.Liu, Y. and Dalal, V.L.: Properties of amorphous silicon-germanium films and devices deposited at higher growth rates, in Amorphous and Heterogeneous Silicon-Based Films—2002, edited by Cohen, J.D., Abelson, J.R., Matsumura, H., and Robertson, J. (Mater. Res. Soc. Symp. Proc. 715, Warrendale, PA, 2002), p. A18.3.Google Scholar
12.Matsumura, H., Yamaguchi, M. and Morigaki, K.: Properties of catalytic CVD amorphous silicon germanium (a-SiGe:H), in Amorphous Silicon Technology—1990, edited by Taylor, P.C., Thompson, M.J., LeComber, P.G., Hamakawa, Y., and Madan, A. (Mater. Res. Soc. Symp. Proc. 192, Pittsburgh, PA, 1990), p. 499.Google Scholar
13.Dalal, V.L., Liu, Y., Zhou, Z. and Han, K.: Growth and properties of low bandgap amorphous (Si, Ge) alloy materials and devices. J. Non-Cryst. Solids 299–302, 1127 (2002).Google Scholar
14.Lieberman, M.A. and Lichtenberg, A.J.: Principles of Plasma Discharges and Material Processing (J. Wiley and Sons, New York, 1994), p. 333.Google Scholar
15.Budagian, B.G., Sherechenkov, A.A., Gorbulin, G.L. and Chernomordic, V.D.: Characterization of high rate a-SiGe:H thin films fabricated by 55 kHz PECVD. Physica B 325, 394 (2003).Google Scholar
16.Mackenzie, K.D., Eggert, J.R., Leopold, D.J., Li, Y.M., Lin, S. and Paul, W.: Structural, electrical, and optical properties of a-Si1−xGex:H and an inferred electronic band structure. Phys. Rev. B 31, 2198 (1985).Google Scholar
17.Liu, Y. and Dalal, V.L.: Properties of amorphous silicon-germanium films and devices deposited at higher growth rates, in Amorphous and Heterogeneous Silicon Based Films—2002, edited by Cohen, J.D., Abelson, J.R., Matsumura, H., and Robertson, J. (Mater. Res. Soc. Symp. Proc. 715 Warrendale, PA, 2002), p. A18.3.Google Scholar
18.Wickboldt, P., Pang, D., Paul, W., Chen, J.H., Zhong, F., Chen, C.C., Cohen, J.D. and Williamson, L.: High performance glow discharge a-Si1−xGex:H of large x J. Appl. Phys. 81, 6252 (1997).CrossRefGoogle Scholar
19.Tsuo, Y.S., Xu, Y., Ramsay, E.A., Crandall, R.S., Salamon, S.J., Balberg, I., Nelson, B.P., Xiao, Y. and Chen, Y.: Methods of improving glow-discharge-deposited a-SiGe, in Amorphous Silicon Technology—1991, edited by Madan, A., Hamakawa, Y., Thompson, M.J., Taylor, P.C., and LeComber, P.G. (Mater. Res. Soc. Symp. Proc. 219 Pittsburgh, PA, 1991), p. 769.Google Scholar
20.Shima, M., Terakawa, A., Isomura, M., Haku, H., Tanaka, M., Wakisaka, K., Kiyama, S. and Tsuda, S.: Effects of very high hydrogen dilution at low temperature on hydrogenated amorphous silicon germanium. J. Non-Cryst. Solids 227–230, 442 (1998).Google Scholar
21.Miyazaki, S., Takahashi, H., Yamashita, H. and Hirose, M.: Growth and characterization of microcrystalline silicon–germanium films. J. Non-Cryst. Solids 299–302, 148 (2002).CrossRefGoogle Scholar
22.Gueunier, M.E., Kleider, J.P., Bruggemann, R., Lebib, S., Roca, P., Cabarrocas, I., Meaudre, R. and Canut, B.: Properties of polymorphous silicon–germanium alloys deposited under high hydrogen dilution and at high pressure. J. Appl. Phys. 92, 4959 (2002).Google Scholar
23.Jordan, W.B. and Wagner, S.: Effects of deposition temperature and film thickness on the structural, electrical, and optical properties of germanium thin films, in Amorphous and Heterogeneous Silicon Based Films—2002, edited by Cohen, J.D., Abelson, J.R., Matsumura, H., and Robertson, J. (Mater. Res. Soc. Symp. Proc. 715 Warrendale, PA, 2002), p. A18.2.Google Scholar
24.Brodsky, M.H., Cardona, M. and Cuomo, J.C.: Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys. Rev. B 16, 3556 (1977).CrossRefGoogle Scholar
25.Swanepoel, R.: Determination of the thickness and optical constants of amorphous silicon. J. Phys. E. Sci. Instrum. 16, 1214 (1983).CrossRefGoogle Scholar
26.Swanepoel, R.: Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phys. E. Sci. Instrum. 17, 896 (1984).CrossRefGoogle Scholar
27.Zhao, Y., Wang, G-C. and Lu, T-M.: Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Academic Press Inc., Reading, MA 2001), pp. 716.Google Scholar
28.Comedi, D., Dondeo, F., Chambouleyron, I., Peng, Z.L. and Masher, P.: Compact hydrogenated amorphous germanium films by ion-beam sputtering deposition. J. Non-Cryst. Solids 266–269, 713 (2000).Google Scholar
29.Lukovsky, G., Chao, S.S., Yang, J., Tyler, J.E., Ross, R.C. and Czubatyj, W.: Chemical bonding of hydrogen and oxygen in glow-discharge–deposited thin films of a-Ge:H and a-Ge:(H,O). Phys. Rev. B 31, 2190 (1985).CrossRefGoogle Scholar
30.Makadzi, M.N., Alias, M.F.A., Essa, A.A. and Al-Azawi, H.R.: FT-IR and XPS analysis of a-Si1−xGex:H thin films. Renewable Energy 28, 975 (2003).Google Scholar
31.Lukovsky, G., Yang, J., Chao, S.S., Tyler, J.E. and Chubatyj, W.: IR absorption in glow-discharge-deposited a-Si:(D,O) and a-Si:(D,N) alloy films. Phys. Rev. B 29, 2302 (1984).CrossRefGoogle Scholar
32.Lukovsky, G. and Joannopoulos, J.D.: The Physics of Hydrogenated Amorphous Silicon (VII, Springer, Berlin, Germany, 1984), p. 235.Google Scholar
33.Fang, C.J., Gruntz, R.J., Ley, L., Cardona, M., Demond, F.J., Muller, G. and Kalbitzer, S.: The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution and nuclear reaction techniques. J. Non-Cryst. Solids 35–36, 255 (1980).Google Scholar
34.Beyer, W.: Diffusion and solubility of hydrogen in amorphous and microcrystalline Si:H films, in Amorphous and Heterogeneous Silicon-Based Films—2001, edited by Stutzmann, M., Boyce, J.B., Cohen, J.D., Collins, R.W., and Hanna, J. (Mater. Res. Soc. Symp. Proc. 664 Warrendale, PA, 2001), p. A13.1.Google Scholar
35.Lanford, W.A., Trautvetter, H.P., Ziegler, J.F. and Keller, J.: New precision technique for measuring the concentration versus depth of hydrogen in solids. Appl. Phys. Lett. 28, 566 (1976).CrossRefGoogle Scholar
36.Ross, R.C., Tsongm, I.S.T., Messier, R., Lanford, W.A. and Burman, C.: Quantification of hydrogen in a-Si:H films by IR spectrometry, N nuclear reaction, and SIMS. J. Vac. Sci. Technol. 20, 406 (1982).Google Scholar
37.Cardona, M.: Vibrational-spectra of hydrogen in silicon and germanium. Phys. Status Solidi B 118, 463 (1983).CrossRefGoogle Scholar
38.Mackenzie, K.D., Eggert, J.R., Leopold, D.J., Li, Y.M., Lin, S. and Paul, W.: Structural, electrical, and optical properties of a-Si1−xGex:H and an inferred electronic band structure. Phys. Rev. B 31, 2198 (1985).Google Scholar
39.Langford, A.A., Fleet, M.L., Nelson, B.P. and Maley, N.: Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Phys. Rev. B 45, 13367 (1992).CrossRefGoogle ScholarPubMed
40.Nelson, B.P., Xu, Y., Webb, J.D., Mason, A., Reedy, R.C., Gedvilas, L.M. and Lanford, W.A.: Techniques for measuring the composition of hydrogenated amorphous silicon–germanium alloys. J. Non-Cryst. Solids 266–269, 680 (2000).Google Scholar
41.Paul, W., Paul, D.K., Von Roedern, B., Blake, J. and Oguz, S.: Preferential attachment of H in amorphous hydrogenated binary semiconductors and consequent inferior reduction of pseudogap state density. Phys. Rev. Lett. 46, 1016 (1981).CrossRefGoogle Scholar
42.Stutzmann, M., Street, R.A., Tsai, C.C., Boyce, J.B. and Ready, S.E.: Structural, optical, and spin properties of hydrogenated amorphous silicon-germanium alloys. J. Appl. Phys. 66, 569 (1989).Google Scholar
43.Dalal, V.L.: Growth chemistry of amorphous silicon and amorphous silicon-germanium alloys. Curr. Opin. Solid State Mater. Sci. 6, 455 (2002).Google Scholar
44.Mott, N.F. and Davis, E.A.: Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, U.K., 1979).Google Scholar
45.Handbook of Optical Constants of Solids II, edited by Palik, E. (Academic Press Inc., Reading, MA), p. 774.Google Scholar
46.Potter, R.F.: Optical constants of germanium in spectral region from 0.5 to 3.0 eV. Phys. Rev. 150, 562 (1966).Google Scholar
47.Nagels, P. In Amorphous Silicon, edited by Brodsky, M.H. (Springer, New York, 1979), p. 122.Google Scholar
48.Carlson, D.E. and Wronski, C.R. Amorphous silicon solar cells, in Amorphous Semiconductors, edited by Brodsky, M.H. (Springer, New York, 1979), Chap. 10, p. 299.Google Scholar
49.Yukimoto, Y. Hydrogenated a-Si-Ge alloy and its aoptoelectronic in JARECT v: 6 Amorphous Semiconductor Technologies and devices, edited by Hamakawa, Y., (1983), p. 136.Google Scholar
50.Jackson, W.B.: Connection between the Meyer–Neldel relation and multiple-trapping transport. Phys. Rev. B 38, 3595 (1988).Google Scholar
51.Kikuchi, M.: The Meyer–Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors. J. Appl. Phys. 64, 4997 (1988).Google Scholar
52.Canbarrocas, P. Roca i, Morrin, P., Chu, V., Conde, J.P., Liu, J.Z., Park, H.R. and Wagner, S.: Optoelectronic properties of hydrogenated amorphous silicon films deposited under negative substrate bias. J. Appl. Phys. 69, 2942 (1991).Google Scholar
53.Kalache, B., Kosarev, A.I., Vanderhagen, R. and Cabarrocas, P. Roca i: Ion bombardment effects on microcrystalline silicon growth mechanisms and on the film properties. J. Appl. Phys. 93, 1262 (2003).Google Scholar
54.Hammers, E.A.G., Fontcuberta, A., Morral, I., Niikura, C., Brenot, R. and Cabarrocas, P. Roca I: Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films. J. Appl. Phys. 88, 3674 (2000).Google Scholar
55.Dalal, V.L., Haroon, S., Zhou, Z., Maxson, T. and Han, K.: Influence of plasma chemistry on the properties of a-(Si,Ge):H alloys. J. Non-Cryst Solids 266, 675 (2000).Google Scholar
56.Chou, Y-P. and Lee, S-C.: Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys. J. Appl. Phys. 83, 4111 (1998).CrossRefGoogle Scholar
57.www.webelements.com.Google Scholar
58.Matsuda, A.: Plasma and surface reactions for obtaining low defect density amorphous silicon at high growth rates. J. Vac. Sci. Technol. A 16, 365 (1998).CrossRefGoogle Scholar
59.Simizu, Y.T., Kumeda, M., Morimoto, A., Tsujimura, Y. and Kobayashi, I.: NMR and ESR studies on a-SiGe:H films prepared by glow discharge and magnetron sputtering, in Materials Issues in Amorphous-Semiconductor Technology, edited by Adler, D., Hamakawa, Y., and Madan, A. (Mater. Res. Symp. Proc. 70, 1986), p. 313.Google Scholar
60.Budaguan, B.G., Sherchenkov, A.A. and Gorbulin, G.L.: The properties of a-SiGe:H films deposited by 55 kHz PECVD. J. Non-Cryst Solids 297, 205 (2002).CrossRefGoogle Scholar
61.Mackenzie, K.D., Burnett, J.H., Eggert, J.R., Li, Y.M. and Paul, W.: Comparison of the structural, electrical, and optical properties of amorphous silicon-germanium alloys produced from hydrides and fluorides. Phys. Rev. B38, 6120 (1988).Google Scholar
62.Mackenzi, K.D., Hanma, J., Eggert, J.R., Li, Y.M., Sun, Z.L. and Paul, W.: Properties of a-Si1−xGex:H and a-Si1−xGex:H:F alloys. J. Non-Cryst. Solids 77–78, 881 (1985).Google Scholar
63.Sheng, S.R., Boshta, M., Braunstein, R. and Dalal, V.: On the electronic transport properties of amorphous (Si,Ge) alloys: Charged scattering centers and compositional disorder. J. Non-Cryst. Solids 303, 201 (2002).Google Scholar