Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T16:59:13.922Z Has data issue: false hasContentIssue false

Significant room-temperature plasticity in a high Zr-containing bulk glassy alloy

Published online by Cambridge University Press:  04 May 2020

Shuangshuang Chen*
Affiliation:
School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China; and Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Anhui University of Technology, Ministry of Education, Ma'anshan 243002, China
Peidi Song
Affiliation:
School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
Dong Xing
Affiliation:
School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
Jiahua Zou*
Affiliation:
School of Management Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
Xida Deng
Affiliation:
College of Materials Science and Engineering, Shenzhen University, Shenzhen518060, China
Feng Liu
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In this study, the glass forming ability, thermal stability, and room-temperature mechanical behavior of a high Zr-containing Zr71Cu11Ni10.5Al7Ti0.5 bulk glassy alloy were investigated. The glassy alloy exhibits a high glass-forming ability with a critical casting diameter of 5 mm using copper mold injection casting, and its critical cooling rate is estimated to be smaller than 40 K/s. A small kinetic fragility index m of 32 indicates its good thermodynamic stability and glass-forming ability. Compressive tests indicate that the glassy alloy displays a significant average plastic strain of 12.3%, a high fracture strength of 1592 MPa, and Young's modulus of 74.5 GPa. The good ductility is attributed to the introduction of more free volume and local compositional inhomogeneity with increasing Zr addition. This finding may provide useful guidelines for the development of novel high Zr-containing glassy alloys.

Type
Novel Synthesis and Processing of Metals
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 4256 (1999).CrossRefGoogle Scholar
Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279306 (2000).CrossRefGoogle Scholar
Schuh, C., Hufnagel, T., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 40674109 (2007).CrossRefGoogle Scholar
Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 23422344 (1993).CrossRefGoogle Scholar
Inoue, A. and Zhang, T.: Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater. Trans., JIM 37, 185187 (1996).CrossRefGoogle Scholar
Wang, D., Tan, H., and Li, Y.: Multiple maxima of GFA in three adjacent eutectics in Zr–Cu–Al alloy system—A metallographic way to pinpoint the best glass forming alloys. Acta Mater. 53, 29692979 (2005).CrossRefGoogle Scholar
Jiang, Q.K., Wang, X.D., Nie, X.P., Zhang, G.Q., Ma, H., Fecht, H-J., Bendnarcik, J., Franz, H., Liu, Y.G., Cao, Q.P., and Jiang, J.Z.: Zr–(Cu, Ag)–Al bulk metallic glasses. Acta Mater. 56, 17851796 (2008).CrossRefGoogle Scholar
Zhang, T. and Inoue, A.: Formation, thermal, and mechanical properties of bulk glassy alloys in Zr–Al–Co–Cu systems. Mater. Sci. Eng., A 375–377, 432435 (2004).CrossRefGoogle Scholar
Guglielmotti, M.B., Renou, S., and Cabrini, R.L.: A histomorphometric study of tissue interface by laminar implant test in rats. Int. J. Oral Maxillofac. Implants 14, 565570 (1999).Google ScholarPubMed
Lee, J.K.L., Maruthainar, K., Wardle, N., Haddad, F., and Blunn, G.W.: Increased force simulator wear testing of a zirconium oxide total knee arthroplasty. Knee 16, 269274 (2009).CrossRefGoogle ScholarPubMed
Morrison, M.L., Buchanan, R.A., Leon, R.V., Liu, C.T., Green, B.A., Liaw, P.K., and Horton, J.A.: The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. J. Biomed. Mater. Res. 74A, 430438 (2005).CrossRefGoogle Scholar
Park, J.Y., Yoo, S.J., Choi, B.K., and Jeong, Y.H.: Corrosion and oxide characteristics of Zr–1.5Nb–0.4Sn–0.2Fe–0.1Cr alloys in 360 °C pure water and LiOH solution. J. Nucl. Mater. 373, 343350 (2008).CrossRefGoogle Scholar
Zhang, L., Cheng, Y.Q., Cao, A.J., Xu, J., and Ma, E.: Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater. 57, 11541164 (2009).CrossRefGoogle Scholar
Lin, X.H. and Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glasses. J. Appl. Phys. 78, 65146519 (1995).CrossRefGoogle Scholar
Jones, H.: Rapid Solidification of Metals and Alloys (The Institution of Metallurgist, Chameleon Press, London, 1982).Google Scholar
Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 17021706 (1957).CrossRefGoogle Scholar
Wang, H.R., Gao, Y.L., Min, G.H., Hui, X.D., and Ye, Y.F.: Primary crystallization in rapidly solidified Zr70Cu20Ni10 alloy from a supercooled liquid region. Phys. Lett. A 314, 8187 (2003).CrossRefGoogle Scholar
Li, Y.H., Zhang, W., Dong, C., Qiang, J.B., and Makino, A.: Correlation between the glass-forming ability and activation energy of crystallization for Zr75−xNi25Alx. Int. J. Miner., Metall. Mater. 20, 445449 (2013).CrossRefGoogle Scholar
Fernández, R., Carrasco, W., and Zúñiga, A.: Structure and crystallization of amorphous Cu–Zr–Al powders. J. Non-Cryst. Solids 356, 16651669 (2010).CrossRefGoogle Scholar
Bohmer, R. and Angell, C.A.: Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge–As–Se supercooled liquids. Phys. Rev. B 45, 1009110094 (1992).Google ScholarPubMed
Bruning, R. and Samwer, K.: Glass transition on long time scales. Phys. Rev. B 46, 1131811322 (1992).CrossRefGoogle ScholarPubMed
Bӧhmer, R., Ngai, K.L., Angell, C.A., and Plazek, D.J.: Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 42014209 (1993).CrossRefGoogle Scholar
Zhu, M., Li, J.J., Yao, L.J., Jian, Z.Y., Chang, F.E., and Yang, G.C.: Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry. Thermochim. Acta 565, 132136 (2013).CrossRefGoogle Scholar
Park, E.S., Na, J.H., and Kim, D.H.: Correlation between fragility and glass-forming ability/plasticity in metallic glass-forming alloys. Appl. Phys. Lett. 91, 031907031909 (2007).Google Scholar
Wang, G., Chan, K.C., Xia, L., Yu, P., Shen, J., and Wang, W.H.: Self-organized intermittent plastic flow in bulk metallic glasses. Acta Mater. 57, 61466155 (2009).CrossRefGoogle Scholar
Sun, B.A., Tan, J., Pauly, S., Kühn, U., and Eckert, J.: Stable fracture of a malleable Zr-based bulk metallic glass. J. Appl. Phys. 112, 103533103538 (2012).CrossRefGoogle Scholar
Pan, J., Chan, K.C., Chen, Q., Li, N., Guo, S.F., and Liu, L.: The effect of microalloying on mechanical properties in CuZrAl bulk metallic glass. J. Alloys Compd. 504S, S74S77 (2010).CrossRefGoogle Scholar
He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 3337 (2003).CrossRefGoogle ScholarPubMed
White, S.H., Burrows, S.E., Carreras, J., Shaw, N.D., and Humphreys, F.J.: On mylonites in ductile shear zones. J. Struct. Geol. 2, 175188 (1980).CrossRefGoogle Scholar
Kusy, M., Kühn, U., Concustell, A., Gebert, A., Das, J., Eckert, J., Schultz, L., and Baro, M.D.: Fracture surface morphology of compressed bulk metallic glass–matrix–composites and bulk metallic glass. Intermetallics 14, 982986 (2006).Google Scholar
Chen, M.W., Inoue, A., Zhang, W., and Sakurai, T.: Extraordinary plasticity of ductile bulk metallic glasses. Phys. Rev. Lett. 96, 245502245505 (2006).CrossRefGoogle ScholarPubMed
Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E., and Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165169 (2005).CrossRefGoogle Scholar
Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506255509 (2004).CrossRefGoogle ScholarPubMed
Chen, L.Y., Setyawan, A.D., Kato, H., Inoue, A., Zhang, G.Q., Saida, J., Wang, X.D., Cao, Q.P., and Jiang, J.Z.: Free-volume-induced enhancement of plasticity in a monolithic bulk metallic glass at room temperature. Scripta Mater. 59, 7578 (2008).CrossRefGoogle Scholar
Szuecs, F., Kim, C.P., and Johnson, W.L.: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 15071513 (2001).CrossRefGoogle Scholar
Xing, L.Q., Li, Y., Ramesh, K.T., Li, J., and Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201180204 (2001).CrossRefGoogle Scholar
Yano, T., Yorikado, Y., Akeno, Y., Hori, F., Yokoyama, Y., Iwase, A., Inoue, A., and Konno, T.J.: Relaxation and crystallization behavior of the Zr50Cu40Al10 metallic glass. Mater. Trans. 46, 28862892 (2005).CrossRefGoogle Scholar
Mondal, K., Ohkubo, T., Toyama, T., Nagai, Y., Hasegawa, M., and Hono, K.: The effect of nanocrystallization and free volume on the room temperature plasticity of Zr-based bulk metallic glasses. Acta Mater. 56, 53295339 (2008).CrossRefGoogle Scholar
Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing, and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 28172829 (2005).CrossRefGoogle Scholar