Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T05:44:21.380Z Has data issue: false hasContentIssue false

Short-range dislocation interactions using molecular dynamics: Annihilation of screw dislocations

Published online by Cambridge University Press:  31 January 2011

S. Swaminarayan
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. LeSar
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. Lomdahl
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. Beazley
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

We present results of a large-scale atomistic study of the annihilation of oppositely signed screw dislocations in an fcc metal using molecular dynamics (MD) and an Embedded-Atom-Method (EAM) potential for Cu. The mechanisms of the annihilation process are studied in detail. From the simulation results, we determined the interaction energy between the dislocations as a function of separation. These results are compared with predictions from linear elasticity to examine the onset of non-linear-elastic interactions. The applicability of heuristic models for annihilation of dislocations in large-scale dislocation dynamics simulations is discussed in the light of these results.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hirth, J. P. and Lothe, J., in Theory of Dislocations (John Wiley and Sons, New York, 1982).Google Scholar
2.Amodeo, R. J. and Ghoneim, N. M., in Modeling the Deformation of Crystalline Solids, edited by Lowe, T. C., Rollett, A. D., Follansbee, P. S., and Daehn, G. S. (The Minerals, Metals and Materials Society, Warrendale, PA, 1991).Google Scholar
3.Wang, H. Y. and LeSar, R., Philos. Mag. A, 71 (1995).Google Scholar
4.Barts, D. B. and Carlsson, A. E., Phys. Rev. E 52 (1995).CrossRefGoogle Scholar
5.Zacharopoulos, N., Srolovitz, D. J., and LeSar, R., Acta Mater. (in press).Google Scholar
6.Woo, C. H. and Puls, M. P., Philos. Mag. 35 (1977).Google Scholar
7.Sinclair, J. E., Gehlen, P. C., Hoagland, R. G., and Hirth, J. P., J. Appl. Phys. 49 (1978).CrossRefGoogle Scholar
8.Takeuchi, S., in Technical Report of ISSP, Ser. A No. 1090 (1980).Google Scholar
9.Minonishi, Y., Ishioka, S., Koiwa, M., Morozumi, S., and Yamaguchi, M., Philos. Mag. A 44, 1225 (1981).CrossRefGoogle Scholar
10.Huang, J., Meyer, M., and Pontikis, V., Phys. Rev. B 42 (1990).Google Scholar
11.Vitek, V. and Igarashi, M., Philos. Mag. A, 63 (1991).CrossRefGoogle Scholar
12.Vitek, V., Prog. Mater. Sci. 36 (1992).CrossRefGoogle Scholar
13.Xie, Z. Y., Vailhe, C., and Farkas, D., Mater. Sci. Eng. A170 (1993).Google Scholar
14.Pasianot, R., Xie, Z., Farkas, D., and Savino, E., Mod. Simul. Mater. Sci. 2, 383 (1994).CrossRefGoogle Scholar
15.von Boehm, J. and Nieminen, R. M., Phys. Rev. B 53 (1996).CrossRefGoogle Scholar
16.Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33.2 (1986).Google Scholar
17.Voter, A. F., “Voter's EAM potential”.Google Scholar
18.Allen, M. P. and Tildsley, D. J., in Computer Simulation of Liquids (Oxford Science Publications, Oxford, 1996).Google Scholar
19.Beazley, D. M. and Lomdahl, P. S., Parallel Computing 20 (1994).CrossRefGoogle Scholar
20.Beazley, D. M., Lomdahl, P. S., Tamayo, P., and Gronbech-Jensen, N., in Proc. 8th Int. Parallel Processing Symp., (IEEE Computer Society, Los Alamitos, CA, 1994).Google Scholar
21.Weertman, J. and Weertman, J., in Elementary Dislocations Theory, Macmillan Series in Materials Science, 1971.Google Scholar
22.van der Giessen, E. and Needleman, A., Mod. Sim. Mater. Sci. Eng. 3, 689 (1995).CrossRefGoogle Scholar