Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T01:29:08.021Z Has data issue: false hasContentIssue false

Self-patterned localized metal contacts for silicon solar cells

Published online by Cambridge University Press:  23 July 2013

Zhong Lu*
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney New South Wales 2052, Australia
Pei Hsuan Lu*
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney New South Wales 2052, Australia
Jie Cui
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney New South Wales 2052, Australia
Kai Wang
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney New South Wales 2052, Australia
Alison Lennon
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, The University of New South Wales, Sydney New South Wales 2052, Australia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This paper describes the use of self-patterning anodic aluminum oxide (AAO) layers to enable localized metal contacts and to achieve passivation for the rear surface of silicon solar cells. There are no commercially available technologies that are capable of patterning localized contacts on silicon solar cells with low cost, high-throughput, and robust processing, especially when closely spaced small-area openings are required. In the approach described, nanoporous AAO layers were formed by anodizing aluminum over intervening dielectrics on textured silicon wafers. When the anodized test structures were fired in a belt furnace, localized contacts formed at peaks and valleys of the alkaline-textured silicon surface. Furthermore, the anodization contributed ∼35 mV increment in the implied Voc of the test structures. Low contact resistivity was demonstrated and the proposed contacting mechanism for this innovative localization suggested that the contact percentage can be controlled by varying the anodization duration and/or the surface morphology.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhao, J., Wang, A., and Green, M.A.: 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovoltaics Res. Appl. 7(6), 471474 (1999).3.0.CO;2-7>CrossRefGoogle Scholar
Swanson, R.M., Beckwith, S.K., Crane, R.A., Eades, W.D., Young Hoon, K., Sinton, R.A., and Swirhun, S.E.: Point-contact silicon solar cells. IEEE Trans. Electron Devices 31(5), 661664 (1984).CrossRefGoogle Scholar
Muller, J., Bothe, K., Gatz, S., Plagwitz, H., Schubert, G., and Brendel, R.: Contact formation and recombination at screen-printed local aluminum-alloyed silicon solar cell base contacts. IEEE Trans. Electron Devices 58(10), 32393245 (2011).CrossRefGoogle Scholar
Jiun-Hong, L., Upadhyaya, A., Ramanathan, S., Das, A., Tate, K., Upadhyaya, V., Kapoor, A., Chia-Wei, C., and Rohatgi, A.: High-efficiency large-area rear passivated silicon solar cells with local Al-BSF and screen-printed contacts. IEEE J. Photovoltaics 1, 1621 (2011).Google Scholar
Wang, Z., Han, P., Lu, H., Qian, H., Chen, L., Meng, Q., Tang, N., Gao, F., Jiang, Y., Wu, J., Wu, W., Zhu, H., Ji, J., Shi, Z., Sugianto, A., Mai, L., Hallam, B., and Wenham, S.: Advanced PERC and PERL production cells with 20.3% record efficiency for standard commercial p-type silicon wafers. Prog. Photovoltaics Res. Appl. 20(3), 260268 (2012).CrossRefGoogle Scholar
Dullweber, T., Gatz, S., Hannebauer, H., Falcon, T., Hesse, R., Schmidt, J., and Brendel, R.: Towards 20% efficient large-area screen-printed rear-passivated silicon solar cells. Prog. Photovoltaics Res. Appl. 20(6) 630638 (2011).CrossRefGoogle Scholar
Gatz, S., Hannebauer, H., Hesse, R., Werner, F., Schmidt, A., Dullweber, T., Schmidt, J., Bothe, K., and Brendel, R.: 19.4%-efficient large-area fully screen-printed silicon solar cells. Phys. Status Solidi RRL 5(4), 147149 (2011).CrossRefGoogle Scholar
Schmidt, J., Merkle, A., Brendel, R., Hoex, B., de Sanden, M.C.M., and Kessels, W.M.M.: Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Prog. Photovoltaics Res. Appl. 16(6), 461466 (2008).CrossRefGoogle Scholar
Zhao, J., Wang, A., and Green, M.A.: Series resistance caused by localised rear contact in high efficiency solar cells. Sol. Energy Mater. Sol. Cells 32(1), 8994 (1994).CrossRefGoogle Scholar
Wenham, S.R., Chan, B.O., Honsberg, C.B., and Green, M.A.: Beneficial and constraining effects of laser scribing in buried-contact solar cells. Prog. Photovoltaics Res. Appl. 5(2), 131137 (1997).3.0.CO;2-N>CrossRefGoogle Scholar
Junge, J.: Laser fired contacts for high efficiency solar cells based on EFG material. In 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2008. (WIP-Munich, München, Germany, 2008).Google Scholar
Lennon, A., Utama, R., Lenio, M., Ho-Baillie, A., Kuepper, N., and Wenham, S.R.: Forming openings to semiconductor layers of silicon solar cells by inkjet printing. Sol. Energy Mater. Sol. Cells 92(11), 14101415 (2008).CrossRefGoogle Scholar
Lenio, M., Howard, J., Jentschke, F., Lennon, A., and Wenham, S.R.: Design, fabrication and analysis of high efficiency inkjet printed passivated emitter rear contacted cells. In 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, 19–24 June, 2011, Seattle, WA, 2011. (IEEE, Austin, TX, 2011).Google Scholar
Lennon, A., Renn, M., King, B., and Wenham, S.R.: Aerosol jet etching for silicon solar cells. In 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21–25 September, 2009; Hamburg, Germany, 2009; pp. 22462249. (WIP-Munich, München, Germany, 2009).Google Scholar
Rodriguez, J., Lennon, A., Mei, H., Chan, C., Lu, P.H., Yao, Y., and Wenham, S.R.: Direct etching - targeting commercial photovoltaic applications. In Digital Fabrication Conference, Minneapolis, MN, 2–6 October 2011; Minneapolis, MN, 2011. (The Society for Imaging Science and Technology, 2011).Google Scholar
Liu, L., Du, Z., Lin, F., Hoex, B., and Aberle, A.G.: Aluminum local back surface field solar cells with inkjet-opened rear dielectric films. In 38th IEEE Photovoltaics Specialist Conference, Austin, TX, 3–8 June, 2012; Austin, TX, 2012. (IEEE, Austin, TX, 2012).Google Scholar
Urrejola, E., Peter, K., Plagwitz, H., and Schubert, G.: Al-Si alloy formation in narrow p-type Si contact areas for rear passivated solar cells. J. Appl. Phys. 107(12), 124516 (2010).CrossRefGoogle Scholar
Grasso, F.S., Gautero, L., Rentsch, J., Preu, R., and Lanzafame, R.: Characterisation of local AL-BSF formation for PERC solar cell. In 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 6–10 September, 2010; Valencia, Spain, 2010; pp. 371374. (WIP-Munich, München, Germany, 2010).Google Scholar
Diggle, J.W., Downie, T.C., and Goulding, C.W.: Anodic oxide films on aluminum. Chem. Rev. 69(3), 365405 (1969).CrossRefGoogle Scholar
Lee, W., Scholz, R., Nielsch, K., and Gösele, U.: A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. 44(37), 60506054 (2005).CrossRefGoogle ScholarPubMed
Mikulskas, I., Juodkazis, S., Tomasiunas, R., and Dumas, J.G.: Aluminum oxide photonic crystals grown by a new hybrid method. Adv. Mater. 13(20), 15741577 (2001).3.0.CO;2-9>CrossRefGoogle Scholar
Lu, P.H., Wang, K., Lu, Z., Lennon, A., and Wenham, S.: Anodic aluminum oxide passivation for silicon solar cells. In IEEE J. Photovoltaics. (IEEE, Austin, TX, 2012).Google Scholar
Lu, P.H.D., Chen, Y., and Lennon, A.: Innovative rear point-contact scheme for silicon solar cells. In Solar 2010 Conference, Canberra, Australia, 2010; Canberra, Australia, 2010. (Australian Solar Energy Society, 2010).Google Scholar
Lee, W., Nielsch, K., and Gosele, U.: Self-ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization. Nanotechnology 18, 475713475721 (2007).CrossRefGoogle Scholar
Narasimha, S. and Rohatgi, A.: An optimized rapid aluminum back surface field technique for silicon solar cells. IEEE Trans. Electron Devices 46(7), 13631370 (1999).CrossRefGoogle Scholar
Sinton, R.A., Cuevas, A., and Stuckings, M.: Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. In 25th IEEE Photovoltaic Specialists Conference, Washington, DC, 13–17 May, 1996; Washington, DC, 1996; pp. 457460. (IEEE, Austin, TX, 1996).CrossRefGoogle Scholar
Sproul, A.B. and Green, M.A.: Improved value for the silicon intrinsic carrier concentration from 275 to 375 K. J. Appl. Phys. 70, 846854 (1991).CrossRefGoogle Scholar
Raineri, V., Privitera, V., Vandervorst, W., Hellemans, L., and Snauwaert, J.: Carrier distribution in silicon devices by atomic force microscopy on etched surfaces. Appl. Phys. Lett. 64(3), 354356 (1994).CrossRefGoogle Scholar
Berger, H.H.: Models for contacts to planar devices. Solid State Electron. 15, 145158 (1972).CrossRefGoogle Scholar
Schroder, D.K. and Meier, D.L.: Solar cell contact resistance - a review. IEEE Trans. Electron Devices ED- 31(5), 637647 (1984).CrossRefGoogle Scholar
Hezel, R. and Jaeger, K.: Low-temperature surface passivation of silicon for solar cells. J. Electrochem. Soc. 136(2), 518523 (1989).CrossRefGoogle Scholar
Hoex, B., Heil, S.B.S., Langereis, E., van de Sanden, M.C.M., and Kessels, W.M.M.: Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Appl. Phys. Lett. 89, 042112042114 (2006).CrossRefGoogle Scholar
Schmidt, J., Merkle, A., Hoex, B., van de Sanden, M.C.M., and Kessels, W.M.M.: Atomic-layer-deposited aluminum oxide for the surface passivation of high efficiency silicon solar cells. In 33rd IEEE Photovoltaics Specialist Conference, San Diego, CA, 11–16 May, 2008; San Diego, CA, 2008.Google Scholar
Lambert, J., Guthmann, C., Ortega, C., and Saint-Jean, M.: Permanent polarization and charge injection in thin anodic alumina layers studied by electrostatic force microscopy. J. Appl. Phys. 91(11), 91619169 (2002).CrossRefGoogle Scholar
Vrublevsky, I., Jagminas, A., Schreckenbach, J., and Goedel, W.A.: Electronic properties of electrolyte/anodic alumina junction during porous anodizing. Appl. Surf. Sci. 253(10), 46804687 (2007).CrossRefGoogle Scholar
Williams, K.R., Gupta, K., and Waslik, M.: Etch rates for micromachining processing - part 2. J. Microelectromech. Syst. 12, 761778 (2003).CrossRefGoogle Scholar
Ximello-Quiebras, N., Dastgheib-Shirazi, A., Scholz, S., and Hahn, G.: Influence of pyramid size of chemically textured silicon wafers on the characteristics of industrial solar cells. In 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 6–10 September, 2010; Valencia, Spain, 2010; pp. 17611764.Google Scholar
Cudzinovic, M.J. and Sopori, B.: Control of back surface reflectance from aluminum alloyed contacts on silicon solar cells. In 25th IEEE Photovoltaics Specialist Conference, 1996; 1996; pp 501503.CrossRefGoogle Scholar
Meemongkolkiat, V., Nakayashiki, K., Kim, D.S., Kopecek, R., and Rohatgi, A.: Factors limiting the formation of uniform and thick aluminum–back-surface field and its potential. J. Electrochem. Soc. 153(1), G53G58 (2006).CrossRefGoogle Scholar
Muller, J., Gatz, S., Bothe, K., and Brendel, R.: Optimizing the geometry of local aluminum-alloyed contacts to fully screen-printed silicon solar cells. In Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE, 3–8 June 2012, 2012; pp. 002223002228.Google Scholar
Dauwe, S., Mittelstädt, L., Metz, A., and Hezel, R.: Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Prog. Photovoltaics Res. Appl. 10(4), 271278 (2002).CrossRefGoogle Scholar
Cui, J., Colwell, J., Li, Z., and Lennon, A.: Localised back surface field formation via different dielectric patterning approaches. In The 50th Annual Australian Solar Council's Conference. Swinburne University of Technology, Melbourne, (AuSES, 2012).Google Scholar