Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T21:03:17.110Z Has data issue: false hasContentIssue false

Self-assembly of superparamagnetic nanoparticles

Published online by Cambridge University Press:  17 January 2011

Ningzhong Bao
Affiliation:
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
Arunava Gupta*
Affiliation:
Center for Materials for Information Technology, University of Alabama, Tuscaloosa, Alabama 35487
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Ordered nanoparticle assemblies can exhibit collective properties that are quite different from those displayed by the individual nanoparticles or their bulk counterpart. This paper reviews recent progress on the assembly of superparamagnetic nanoparticles, with emphasis on different strategies for their chemical fabrication with highly ordered nanostructures as well as their novel properties. Prospective applications of superparamagnetic nanoparticles in the fields of photonic crystals, biomedicine, and biology are also discussed.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Glotzer, S.C. and Solomon, M.J.: Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557 (2007).CrossRefGoogle ScholarPubMed
2.Lu, A-H., Salabas, E.L., and Schüth, F.: Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222 (2007).CrossRefGoogle ScholarPubMed
3.Park, J., Joo, J., Kwon, S.G., Jang, Y., and Hyeon, T.: Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630 (2007).CrossRefGoogle ScholarPubMed
4.Sun, S.: Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 18, 393 (2006).CrossRefGoogle Scholar
5.Jeong, U., Teng, X., Wang, Y., Yang, H., and Xia, Y.: Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 19, 33 (2007).CrossRefGoogle Scholar
6.Ge, J. and Yin, Y.: Magnetically responsive colloidal photonic crystals. J. Mater. Chem. 18, 5041 (2008).CrossRefGoogle Scholar
7.Gao, J., Gu, H., and Xu, B.: Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097 (2009).CrossRefGoogle ScholarPubMed
8.O’Handley, R.C.: Modern Magnetic Materials: Principles and Applications (Wiley-Interscience, New York, 1999).Google Scholar
9.Cullity, B.D.: Introduction to Magnetic Materials (Addison-Wesley, Reading, Massachusetts, 1972).Google Scholar
10.Nakata, K., Hu, Y., Uzun, O., Bakr, O., and Stellacci, F.: Chains of superparamagnetic nanoparticles. Adv. Mater. 20(22), 1 (2008).CrossRefGoogle Scholar
11.Siffalovic, P., Majkova, E., Chitu, L., Jergel, M., Luby, S., Capek, I., Satka, A., Timmann, A., and Roth, S.V.: Real-time tracking of superparamagnetic nanoparticle self-assembly. Small 4, 2222 (2008).CrossRefGoogle ScholarPubMed
12.Hou, Y., Xu, Z., and Sun, S.: Controlled synthesis and chemical conversions of FeO nanoparticles. Angew. Chem. Int. Ed. 46, 6329 (2007).CrossRefGoogle ScholarPubMed
13.Zeng, H., Li, J., Liu, J.P., Wang, Z.L., and Sun, S.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395 (2002).CrossRefGoogle ScholarPubMed
14.Lacroix, L-M., Lachaize, S., Falqui, A., Respaud, M., and Chaudret, B.: Iron nanoparticle growth in organic superstructures. J. Am. Chem. Soc. 131, 549 (2009).CrossRefGoogle ScholarPubMed
15.Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
16.Levine, D. and Steinhardt, P.J.: Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 53, 2477 (1984).CrossRefGoogle Scholar
17.Talapin, D.V., Shevchenko, E.V., Bodnarchuk, M.I., Ye, X., Chen, J., and Murray, C.B.: Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964 (2009).CrossRefGoogle ScholarPubMed
18.Shevchenko, E.V., Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M., and Weller, H.: Colloidal synthesis and self-assembly of CoPt3 nanocrystals. J. Am. Chem. Soc. 124, 11480 (2002).CrossRefGoogle ScholarPubMed
19.Redl, F.X., Cho, K-S., Murray, C.B., and O’Brien, S.: Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968 (2003).CrossRefGoogle ScholarPubMed
20.Ahniyaz, A., Sakamoto, Y., and Bergstrom, L.: Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes. PNAS 101, 17570 (2007).CrossRefGoogle Scholar
21.Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H.: Quantum dot bioconjugates for imaging, labeling and sensing. Nat. Mater. 4, 435 (2005).CrossRefGoogle ScholarPubMed
22.Shenhar, R., Norsten, T.B., and Rotello, V.M.: Polymer-mediated nanoparticle assembly: Structural control and applications. Adv. Mater. 17, 657 (2005).CrossRefGoogle Scholar
23.Nikolic, M.S., Olsson, C., Salcher, A., Kornowski, A., Rank, A., Schubert, R., Frömsdorf, A., Weller, H., and Förster, S.: Micelle and vesicle formation of amphiphilic nanoparticles. Angew. Chem. Int. Ed. 48, 2752 (2009).CrossRefGoogle ScholarPubMed
24.Soler-Illia, G.J.A.A., Sanchez, C., Lebeau, B., and Patarin, J.: Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 102, 4093 (2002).CrossRefGoogle ScholarPubMed
25.Alexandridis, P., Holzwarth, J.F., and Hatton, T.A.: Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association. Macromolecules 27, 2414 (1994).CrossRefGoogle Scholar
26.Evans, D.F. and Wennerström, H., Eds.: The Colloidal Domain Where Physics, Chemistry, Biology and Technology Meet (VCH Publishers, Weinheim, Germany, 1994).Google Scholar
27.Li, Y.D., Li, X., He, R., Zhu, J., and Zhao, X.: Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc. 124, 1411 (2002).CrossRefGoogle Scholar
28.Frankamp, B.L., Boal, A.K., Tuominen, M.T., and Rotello, V.M.: Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly. J. Am. Chem. Soc. 127, 9731 (2005).CrossRefGoogle ScholarPubMed
29.Euliss, L.E., Grancharov, S.G., O’Brien, S., Deming, T.J., Stucky, G.D., Murray, C.B., and Held, G.A.: Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett. 3, 1489 (2003).CrossRefGoogle Scholar
30.Kim, B., Qiu, J.M., Wang, J.P., and Taton, T.A.: Magnetomicelles: Composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett. 5, 1987 (2005).CrossRefGoogle ScholarPubMed
31.Niu, D., Li, Y., Ma, Z., Diao, H., Gu, J., Chen, H., Zhao, W., Ruan, M., Zhang, Y., and Shi, J.: Preparation of uniform, water-soluble, and multifunctional nanocomposites with tunable sizes. Adv. Funct. Mater. 20, 773 (2010).CrossRefGoogle Scholar
32.Teng, X.W., Liang, X., Rahman, S., and Yang, H.: Porous membrane of nanoparticles: Synthesis and its application as fuel cell catalyst. Adv. Mater. 17, 2237 (2005).CrossRefGoogle Scholar
33.Hulteen, J.C. and Martin, C.R.: A general template-based method for the preparation of nanomaterials. J. Mater. Chem. 7, 1075 (1997).CrossRefGoogle Scholar
34.Davis, M.E.: Ordered porous materials for emerging applications. Nature 417, 813 (2002).CrossRefGoogle ScholarPubMed
35.MacLachlan, M.J., Ginzburg, M., Coombs, N., Raju, N.P., Greedan, J.E., Ozin, G.A., and Manners, I.: Superparamagnetic ceramic nanocomposites: Synthesis and pyrolysis of ring-opened poly(ferrocenylsilanes) inside periodic mesoporous silica. J. Am. Chem. Soc. 122, 3878 (2000).CrossRefGoogle Scholar
36.Zhao, W.R., Gu, J.L., Zhang, L.X., Chen, H.R., and Shi, J.L.: Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 127, 8916 (2005).CrossRefGoogle ScholarPubMed
37.Kim, J., Lee, J.E., Lee, J., Yu, J.H., Kim, B.C., An, K., Hwang, Y., Shin, C.H., Park, J.G., Kim, J., and Hyeon, T.: Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J. Am. Chem. Soc. 128, 688 (2006).CrossRefGoogle ScholarPubMed
38.Lin, Y.S., Wu, S.H., Hung, Y., Chou, Y.H., Chang, C., Lin, M.L., Tsai, C.P., and Mou, C.Y.: Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous. Chem. Mater. 18, 5170 (2006).CrossRefGoogle Scholar
39.Giri, S., Trewyn, B.G., Stellmaker, M.P., and Lin, V.S.Y.: Magnetic nanoparticle-capped mesoporous silica nanorod-based stimuli-responsive controlled release delivery system. Angew. Chem. Int. Ed. 44, 5038 (2005).CrossRefGoogle Scholar
40.Jiao, F., Harrison, A., Jumas, J-C., Chadwick, A.V., Kockelmann, W., and Bruce, P.G.: Ordered mesoporous iron oxide with crystalline walls. J. Am. Chem. Soc. 128, 5468 (2006).CrossRefGoogle ScholarPubMed
41.Tian, B., Liu, X., Yang, H., Xie, S., Yu, C., Tu, B., and Zhao, D.: General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv. Mater. 15, 1370 (2003).CrossRefGoogle Scholar
42.Imperor-Clerc, M., Bazin, D., Appay, M-D., Beaunier, P., and Davidson, A.: Crystallization of γ-MnO2 nanowires in the pores of SBA-15 silicas: In situ investigation using synchrotron radiation. Chem. Mater. 16, 1813 (2004).CrossRefGoogle Scholar
43.Peng, S. and Sun, S.: Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 46, 4155 (2007).CrossRefGoogle ScholarPubMed
44.Peng, S., Wang, C., Xie, J., and Sun, S.: Synthesis and stabilization of monodisperse Fe nanoparticles. J. Am. Chem. Soc. 128, 10676 (2006).CrossRefGoogle ScholarPubMed
45.Chen, H.M., Liu, R-S., Li, H., and Zeng, H.C.: Generating isotropic superparamagnetic interconnectivity for the two-dimensional organization of nanostructured building blocks. Angew. Chem. Int. Ed. 45, 2713 (2006).CrossRefGoogle ScholarPubMed
46.Yin, Y.D., Rioux, R.M., Erdonmez, C.K., Hughes, S., Somorjai, G.A., and Alivisatos, A.P.: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711 (2004).CrossRefGoogle ScholarPubMed
47.Tartaj, P. and Serna, C.J.: Synthesis of monodisperse superparamagnetic Fe/silica nanospherical composites. J. Am. Chem. Soc. 125, 15754 (2003).CrossRefGoogle ScholarPubMed
48.Ge, J., Hu, Y., Zhang, T., and Yin, Y.: Superparamagnetic composite colloids with anisotropic structures. J. Am. Chem. Soc. 129, 8974 (2007).CrossRefGoogle ScholarPubMed
49.Long, J.W., Logan, M.S., Rhodes, C.P., Carpenter, E.E., Stroud, R.M., and Rolison, D.R.: Nanocrystalline iron oxide aerogels as mesoporous magnetic architectures. J. Am. Chem. Soc. 126, 16879 (2004).CrossRefGoogle ScholarPubMed
50.Gash, A.E., Tillotson, T.M., Satcher, J.H., Poco, J.F., Hrubesh, L.W., and Simpson, R.L.: Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem. Mater. 13, 999 (2001).CrossRefGoogle Scholar
51.Li, X-H., Zhang, D-H., and Chen, J-S.: Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres. J. Am. Chem. Soc. 128, 8382 (2006).CrossRefGoogle ScholarPubMed
52.Wang, Z., Wu, L., Chen, M., and Zhou, S.: Facile synthesis of superparamagnetic fluorescent Fe3O4/ZnS hollow nanospheres. J. Am. Chem. Soc. 131, 11276 (2009).CrossRefGoogle ScholarPubMed
53.Ge, J., Hu, Y., and Yin, Y.: Highly tunable superparamagnetic colloidal photonic crystals. Angew. Chem. Int. Ed. 46, 7428 (2007).CrossRefGoogle ScholarPubMed
54.Bao, N., Shen, L., Wang, Y-H.A., Ma, J., Mazumdar, D., and Gupta, A.: Controlled growth of monodisperse self-supported superparamagnetic nanostructures of spherical and rod-like CoFe2O4 nanocrystals. J. Am. Chem. Soc. 131, 12900 (2009).CrossRefGoogle ScholarPubMed
55.Zheng, H., Smith, R.K., Jun, Y., Kisielowski, C., Dahmen, U., and Alivisatos, A.P.: Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309 (2009).CrossRefGoogle ScholarPubMed
56.Calderon, F.L., Stora, T., Monval, O.M., Poulin, P., and Bibette, J.: Direct measurement of colloidal forces. Phys. Rev. Lett. 72, 2959 (1994).CrossRefGoogle ScholarPubMed
57.Xu, X., Friedman, G., Humfeld, K.D., Majetich, S.A., and Asher, S.A.: Superparamagnetic photonic crystals. Adv. Mater. 13, 1681 (2001).3.0.CO;2-G>CrossRefGoogle Scholar
58.Xu, X., Friedman, G., Humfeld, K.D., Majetich, S.A., and Asher, S.A.: Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem. Mater. 14, 1249 (2002).CrossRefGoogle Scholar
59.Ge, J., Hu, Y., Biasini, M., Beyermann, W.P., and Yin, Y.: Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 46, 4342 (2007).CrossRefGoogle ScholarPubMed
60.Rosi, N. and Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105, 1547 (2005).CrossRefGoogle ScholarPubMed
61.Stoeva, S.I., Huo, F., Lee, J-S., and Mirkin, C.A.: Three-layer composite magnetic nanoparticle probes for DNA. J. Am. Chem. Soc. 127, 15362 (2005).CrossRefGoogle ScholarPubMed
62.Xu, X.Q., Deng, C.H., Gao, M.X., Yu, W.J., Yang, P.Y., and Zhang, X.M.: Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv. Mater. 18, 3289 (2006).CrossRefGoogle Scholar
63.Deng, Y., Qi, D., Deng, C., Zhang, X., and Zhao, D.: Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 130, 28 (2008).CrossRefGoogle ScholarPubMed
64.Browne, M. and Semelka, R.C.: MRI: Basic Principles and Applications (Wiley, New York, 1999).Google Scholar
65.Berret, J-F., Schonbeck, N., Gazeau, F., El Kharrat, D., Sandre, O., Vacher, A.E., and Airiau, M.C.: Controlled clustering of superparamagnetic nanoparticles using block copolymers: Design of new contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 128, 1755 (2006).CrossRefGoogle ScholarPubMed