Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T13:12:26.920Z Has data issue: false hasContentIssue false

Selective Modification of the Tribological Properties of Aluminum Through Temperature and Dose Control in Oxygen Plasma Source Ion Implantation

Published online by Cambridge University Press:  31 January 2011

M. Bolduc
Affiliation:
Institut National de la Recherche Scientifique–Énergie, Matériaux et Télécommunications (INRS–EMT), Université du Québec, Varennes, Québec J3X 1S2, Canada
B. Terreault
Affiliation:
Institut National de la Recherche Scientifique–Énergie, Matériaux et Télécommunications (INRS–EMT), Université du Québec, Varennes, Québec J3X 1S2, Canada
A. Reguer
Affiliation:
Institut National de la Recherche Scientifique–Énergie, Matériaux et Télécommunications (INRS–EMT), Université du Québec, Varennes, Québec J3X 1S2, Canada
E. Shaffer
Affiliation:
Institut National de la Recherche Scientifique–Énergie, Matériaux et Télécommunications (INRS–EMT), Université du Québec, Varennes, Québec J3X 1S2, Canada
R.G. St-Jacques
Affiliation:
Institut National de la Recherche Scientifique–Énergie, Matériaux et Télécommunications (INRS–EMT), Université du Québec, Varennes, Québec J3X 1S2, Canada
Get access

Abstract

Improvements in the tribological properties of pure aluminum and “aeronautical” alloy AA7075-T651 were obtained by oxygen-ion implantation [(0.7 to 5) × 1017 O/cm2, 30 keV] using our pulsed electron cyclotron resonance plasma source. This oxygen plasma source ion implantation process produced oxide nanoprecipitates that enhanced the hardness up to three times in the surface layer and caused reductions in the scratch depths and the friction coefficients by similar factors. A spectrum of tribological properties was obtained depending on temperature and ion dose. Temperature measurement and control were obtained through an integrated thermocouple and by changing the duty-cycle of the microwave source. The oxygen content and the depth-resolved chemical composition were measured and optimized using x-ray photoelectron spectroscopy (XPS) combined with Ar-ion etching. The tribological properties were investigated by (i) depth-sensing nanoindentation for hardness and Young's modulus, (ii) scratching and scratch-depth measurement via atomic force microscopy (AFM), and (iii) friction force measurements using AFM. Low-temperature (≤160°C) implantations with optimal O-ion doses produced, in both pure and alloyed Al, an approximately 50-nm-thick, smooth, and extremely fine-grained metal–alumina nanocomposite. The resulting surface was hard and stiff but nonbrittle and displayed high scratch resistance and low friction. High-temperature (~430°C) implantation had different effects on pure Al and AA7075. On pure Al, it produced a very hard but brittle Al2O3 layer for which yield points (displacement excursions) were observed at critical load values in the nanoindentation force–displacement curves. On AA7075, XPS chemical profiling revealed an effect of extreme Mg surface segregation and complete Al surface depletion; MgO crystallites formed a rather rough but surprisingly thick layer (>100 nm). The resulting AA7075 surface showed a hardness increase that was substantial but slightly smaller than that obtained at low temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Srikar, V.T. and Spearing, S.M., Sens. Actuators A 102, 279 (2003).CrossRefGoogle Scholar
2.Ohira, S. and Iwaki, M., Mater. Sci. Eng. 90, 143 (1987).CrossRefGoogle Scholar
3.Ohira, S., Iwaki, M., and Hiei, K., Nucl. Instrum. Methods B 32, 66 (1988).CrossRefGoogle Scholar
4.Bourcier, R.S., Myers, S.M., and Polonis, D.H., Nucl. Instrum. Methods B 44, 278 (1990).CrossRefGoogle Scholar
5.Barbour, J.C., Follstaedt, D.M., and Myers, S.M., Nucl. Instrum. Methods B 106, 84 (1995).CrossRefGoogle Scholar
6.Orowan, E., Symposium on Internal Stresses in Metals and Alloys (Institute of Metals, London, U.K., 1948), p. 451.Google Scholar
7.Popovici, D., Bolduc, M., Terreault, B., Sarkissian, A.H., Stansfield, B.L., and Paynter, R.W., J. Vac. Sci. Technol. A 17, 1996 (1999).CrossRefGoogle Scholar
8.Bolduc, M., Popovici, D., and Terreault, B., Surf. Coat. Technol. 138, 125 (2001).CrossRefGoogle Scholar
9.Bolduc, M., Popovici, D., and Terreault, B., Nucl. Instrum. Methods B 175/177, 452 (2001).Google Scholar
10.Saied, S.O. and Sullivan, J.L., J. Phys.: Condens. Matter 5, A165 (1993).Google Scholar
11.Werrett, C.R., Pike, D.R., and Bhattacharya, A.K., Surf. Interface Anal. 25, 809 (1997).3.0.CO;2-M>CrossRefGoogle Scholar
12.Lim, S.C., Kim, D.H., Kim, J.S., Lee, C.H., and Yoon, E.P., Mater. Sci. Technol. 13, 859 (1997).CrossRefGoogle Scholar
13.Johnson, R.A. and Lam, N.Q., Phys. Rev. B 13, 4364 (1976).CrossRefGoogle Scholar
14.Piller, R.C. and Marwick, A.D., J. Nucl. Mater. 71, 309 (1976).CrossRefGoogle Scholar
15.Bolduc, M., Popovici, D., Stansfield, B.L., and Terreault, B., Surf. Coat. Technol. 156, 162 (2002).CrossRefGoogle Scholar
16.Bolduc, M., Terreault, B., and Shaffer, E., presented at PBII2003 (submitted to Surf. Coat. Technol., 2003).Google Scholar
17.Conrad, J.R., Radtke, J.L., Dodd, R.A., and Worzola, F.J., J. Appl. Phys. 62, 4591 (1987).CrossRefGoogle Scholar
18.Bolduc, M. and Terreault, B., Appl. Phys. Lett. 82, 895 (2003).CrossRefGoogle Scholar
19.Biersack, J.P. and Ziegler, J.F., STRIM-2000 <http://www. research.ibm.com>..>Google Scholar
20.Hart, R.K., Proc. R. Soc. A 236, 68 (1956).Google Scholar
21.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
22.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
23.Gerberich, E.W., Yu, W., Kramer, D., Strojny, A., Bahr, D., Lilleoden, E., and Nelson, J., J. Mater. Res. 13, 421 (1998).CrossRefGoogle Scholar
24.Digital Instrument Inc., Support Note No. 225, Rev. F (Digital Instruments, Inc., Santa Barbara, CA, 1998).Google Scholar
25.Ruan, J-A. and Bhushan, B., J. Tribol. 116, 378 (1994).CrossRefGoogle Scholar
26.Du, B., Vanlandingham, M.R., Zang, Q., and He, T., J. Mater. Res. 16, 1487 (2001).CrossRefGoogle Scholar
27.Metals Handbook, 8th ed. (ASM, Metals Park, OH, 1961), Vol. 1, p. 917.Google Scholar
28.Smithells Metals Reference Book, 6th ed., edited by Brandes, E.A. (Butterworths, London, U.K., 1983), Chapter 22.Google Scholar
29.Corcoran, S.G., Colton, R.J., Lilleodden, E.T., and Gerberich, W.W., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 159.Google Scholar
30.Bahr, D.F., Kramer, D.E., and Gerberich, W.W., Acta. Metall. Mater. 46, 3605 (1998).CrossRefGoogle Scholar
31.Pang, M. and Bahr, D.F., J. Mater. Res. 16, 2634 (2001).CrossRefGoogle Scholar
32.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
33.Gerberich, W.W., Venkataraman, S.K., Huang, H., Harvey, S.E., and Kohlstedt, D.L., Acta. Metall. Mater. 43, 1569 (1995).CrossRefGoogle Scholar
34.Knapp, J.A., Myers, S.M., Follstaedt, D.M., and Petersen, G.A., J. Appl. Phys. 11, 6547 (1999).CrossRefGoogle Scholar
35.Page, T.F., Oliver, W.C., and McHargue, C.J., J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
36.Hirsch, P.B. and Humphreys, F.J., Proc. R. Soc. London, Ser. A 318, 45 (1970).Google Scholar
37.Embury, J.D., Metall. Trans. A 16, 2191 (1985).CrossRefGoogle Scholar
38.Kramer, D., Huang, H., Kriese, M., Robach, J., Nelson, J., Wright, A., Bahr, D., and Gerberich, W.W., Acta Mater. 47, 333 (1998).CrossRefGoogle Scholar
39.Zhang, S., Sun, D., Fu, Y., and Du, H., Surf. Coat. Technol. 167, 113 (2003).CrossRefGoogle Scholar
40.Hauert, R. and Patscheider, J., Adv. Eng. Mater. 5, 247 (2000).3.0.CO;2-U>CrossRefGoogle Scholar
41.Gerberich, W.W., Kramer, D.E., Tymiak, N.I., Volinsky, A.A., Bahr, D.F., and Kriese, M.D., Acta. Mater. 47, 4115 (1999).CrossRefGoogle Scholar
42.Weiss, H.J., Phys. Status Solidi A 129, 167 (1992).Google Scholar