Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T17:12:47.710Z Has data issue: false hasContentIssue false

Scratch adhesion testing of nanophase diamond coatings on steel and carbide substrates

Published online by Cambridge University Press:  31 January 2011

F. Davanloo
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P. O. Box 830688, Richardson, Texas 75083–0688
C. B. Collins
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P. O. Box 830688, Richardson, Texas 75083–0688
K. J. Koivusaari
Affiliation:
Microelectronics and Material Physics Laboratories and Electronic Materials, Packaging and Reliability Techniques Research Group of Infotech Oulu, Department of Electrical Engineering, University of Oulu, PL 444, FIN-90571 Oulu, Finland
Get access

Abstract

Films of nanophase diamond are deposited in vacuum onto almost any substrate by condensing multiply charged carbon ions carrying keV energies. These ions are obtained from the laser ablation of graphite at intensities in excess of 1011 W cm−2. The high energies of condensation produce interfacial layers between the film and substrate materials, resulting in levels of adhesion that can support the protection of substrates subjected to harsh environmental conditions. In this article, we give details of the scratch adhesion testing performed on steel and carbide substrates coated with nanophase diamond. A commercially available scratch tester was used and a data analysis was presented to quantitatively assess and measure the adhesion of films on these important substrates. The characterization studies in this work demonstrated nanophase diamond as a highly adherent coating suitable for industrial applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Collins, C.B., Davanloo, F., Juengerman, E.M., Osborn, W.R., and Jander, D.R., Appl. Phys. Lett. 54, 216 (1989).CrossRefGoogle Scholar
2.Davanloo, F., Juengerman, E.M., Jander, D.R., Lee, T.J., and Collins, C.B., J. Appl. Phys. 67, 2081 (1990).CrossRefGoogle Scholar
3.Davanloo, F., Juengerman, E.J., Jander, D.R., Lee, T.J., and Collins, C.B., J. Mater. Res. 5, 2398 (1990).CrossRefGoogle Scholar
4.Collins, C.B., Davanloo, F., Jander, D.R., Lee, T.J., Park, H., and You, J.H., J. Appl. Phys. 69, 7862 (1991).CrossRefGoogle Scholar
5.Davanloo, F., Lee, T.J., Jander, D.R., Park, H., You, J.H., and Collins, C.B., J. Appl. Phys. 71, 1446 (1992).CrossRefGoogle Scholar
6.Collins, C.B., Davanloo, F., Lee, T.J., Jander, D.R., You, J.H., Park, H., and Pivin, J.C., J. Appl. Phys. 71, 3260 (1992).CrossRefGoogle Scholar
7.Collins, C.B., Davanloo, F., Jander, D.R., Lee, T.J., You, J.H., Park, H., Pivin, J.C., Glejbøl, K., and Thölén, A.R., J. Appl. Phys. 72, 239 (1992).CrossRefGoogle Scholar
8.Stevefelt, J. and Collins, C.B., J. Phys. D 24, 2149 (1991).CrossRefGoogle Scholar
9.Collins, C.B., Davanloo, F., You, J.H., and Park, H., in Laser Applications, edited by Mak, A.A., (Proc. SPIE 2097, Bellingham, WA, 1994) p. 129.CrossRefGoogle Scholar
10.Collins, C.B., Davanloo, F., Lee, T.J., You, J.H., and Park, H., in Laser Ablation in Materials Processing-Fundamentals and Applications, edited by Braren, B., Dubowski, J., and Norton, D. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 547.Google Scholar
11.Ong, T.P. and Chang, R.P.H, Appl. Phys. Lett. 58, 358 (1990).CrossRefGoogle Scholar
12.Davanloo, F., Park, H., and Collins, C.B., J. Mater. Res. 8, 2042 (1996).CrossRefGoogle Scholar
13.Berndt, C.C. and Lin, C.K., J. Adhesion Sci. Technol. 7, 1235 (1993).CrossRefGoogle Scholar
14.Mittal, K.L., J. Adhesion Sci. Technol. 1, 247 (1987).CrossRefGoogle Scholar
15.Davanloo, F., Lee, T.J., Park, H., You, J.H., and Collins, C.B., J. Adhesion Sci. Technol. 7, 1323 (1993).CrossRefGoogle Scholar
16.Chiang, S.S., Marshal, D.B., and Evans, A.G., in Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems, Materials Science Vol. 14 (Plenum Press, New York, 1981), p. 603617.CrossRefGoogle Scholar
17.Alam, M., Peebles, D.E., and Ohlhausen, J.A., J. Adhesion Sci. Technol. 7, 1309 (1993).CrossRefGoogle Scholar
18.Sarlin, V.K., J. Adhesion Sci. Technol. 7, 1265 (1993).CrossRefGoogle Scholar
19.Venkataraman, S., Nelson, J.C., Sieh, A.H., Kohlstedt, D.L., and Gerberich, W.W., J. Adhesion Sci. Technol. 7, 1279 (1993).CrossRefGoogle Scholar
20.Gupta, V., MRS Bull. 16(4), 39 (1991).CrossRefGoogle Scholar
21.Steinmann, P.A. and Hintermann, H.E., J. Vac. Sci. Technol. A, 3, 2394 (1985).CrossRefGoogle Scholar
22.Je, J.H., Gyarmati, E., and Naoumidis, A., Thin Solid Films 136, 57 (1986).CrossRefGoogle Scholar
23.Burnett, P.J. and Rickerby, D.S., Thin Solid Films 154, 403 (1987).CrossRefGoogle Scholar
24.Steinmann, P.A., Tardy, Y., and Hintermann, H.E., Thin Solid Films 154, 333 (1987).CrossRefGoogle Scholar