Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T07:39:29.021Z Has data issue: false hasContentIssue false

A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination

Published online by Cambridge University Press:  03 March 2011

Gopal K. Mor
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Maria A. Carvalho
Affiliation:
Department of Chemical Engineering, 267 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Ooman K. Varghese
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering. 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Michael V. Pishko
Affiliation:
Department of Chemical Engineering, 267 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Craig A. Grimes*
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pensylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Described is a room-temperature hydrogen sensor comprised of a TiO2-nanotube array able to recover substantially from sensor poisoning through ultraviolet (UV) photocatalytic oxidation of the contaminating agent; in this case, various grades of motor oil. The TiO2 nanotubes comprising the sensor are a mixture of both anatase and rutile phases, having nominal dimensions of 22-nm inner diameter, 13.5-nm wall thickness, and 400-nm length, coated with a 10-nm-thick noncontinuous palladium layer. At 24 °C, in response to 1000 ppm of hydrogen, the sensors show a fully reversible change in electrical resistance of approximately 175,000%. Cyclic voltammograms using a 1 N KOH electrolyte under 170 mW/cm2 UV illumination show, for both a clean and an oil-contaminated sensor, anodic current densities of approximately 28 mA/cm2 at 2.5 V. The open circuit oxidation potential shows a shift from 0.5 V to −0.97 V upon UV illumination.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A.: Adv. Mater. 15 624 (2003).Google Scholar
2Carotta, M.C., Ferroni, M., Gnani, D., Guidi, V., Merli, M., Martinelli, G., Casale, M.C. and Notaro, M.: Sens. Actuators B 58 310 (1999).CrossRefGoogle Scholar
3Savage, N., Chwieroth, B., Ginwalla, A., Patton, B.R., Akbar, S.A. and Datta, P.K.: Sens. Actuators B 79 17 (2001).CrossRefGoogle Scholar
4Guidi, V., Carotta, M.C., Ferroni, M., Martinelli, G., Paglialonga, L., Comini, E. and Sberveglieri, G.: Sens. Actuators B 57 197 (1999).CrossRefGoogle Scholar
5Ruiz, A., Arbiol, J., Cirera, A., Cornet, A. and Morante, J.R.: Mater. Sci. Eng. C 19 105 (2002).CrossRefGoogle Scholar
6Matthews, R.W.: Water Research 20 569 (1986).CrossRefGoogle Scholar
7Mills, A. and Hunte, S.L.: J. Photochem. Photobio. A 108 1 (1997).CrossRefGoogle Scholar
8Konstantinou, I.K. and Albanis, T.A.: Appl. Catal. B 42 319 (2003).CrossRefGoogle Scholar
9Tanaka, K. and Reddy, K.S.N.: Appl. Catal. B 39 305 (2002).CrossRefGoogle Scholar
10Higarashi, M.M. and Jardim, W.F.: Catalysis Today 76 201 (2002).CrossRefGoogle Scholar
11Malato, S., Blanco, J., Richter, C., Fernández, P. and Maldonado, M.I.: Solar Energy Materials and Solar Cells 64 1 (2000).CrossRefGoogle Scholar
12Chiron, S., Fernandez-Alba, A., Rodriguez, A. and Garcia-Calvo, E.: Water Research 34 366 (2000).CrossRefGoogle Scholar
13Vulliet, E., Chovelon, J-M., Guillard, C. and Herrmann, J-M.: J. Photochem. Photobio. A 159 71 (2003).CrossRefGoogle Scholar
14Garcia, J.C. and Takashima, K.: J. Photochem. Photobio. A 155 215 (2003).Google Scholar
15Vidal, A., Dinya, Z.Mogyorodi, F. Jr. and Mogyorodi, F.: Appl. Catal. B 21 259 (1999).CrossRefGoogle Scholar
16Moctezuma, E., Leyva, E., Monreal, E., Villegas, N. and Infante, D.: Chemosphere 39 511 (1999).CrossRefGoogle Scholar
17Maurino, V., Minero, C., Pelizzetti, E. and Vincenti, M.: Colloids Surf. A 151 329 (1999).CrossRefGoogle Scholar
18Pelizzetti, E., Maurino, V., Minero, C., Zerbinati, O. and Borgarello, E.: Chemosphere 18 1437 (1989).CrossRefGoogle Scholar
19Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C.: J. Mater. Res. 16 3331 (2001).CrossRefGoogle Scholar
20Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemann, D.W.: Chem. Rev. 95 69 (1995).CrossRefGoogle Scholar
21Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M. and Watanabe, T.: Nature 388 431 (1997).CrossRefGoogle Scholar
22Sakai, N., Fujishama, A., Watanabe, T. and Hashimoto, K.: J. Phys. Chem. B 107 1028 (2003).CrossRefGoogle Scholar
23Zeman, P. and Takabayashi, S.: J. Vac. Sci. Technol. A 20 388 (2002).CrossRefGoogle Scholar
24Mills, A. and Lee, S-K.: J. Photochem. Photobiol. A 152 233 (2002).CrossRefGoogle Scholar
25Rome, V., Pichat, P., Guillard, C., Chopin, T. and Lehaut, C.: New J. Chem. 23 365 (1999).Google Scholar
26Who, D.X.: J. Photochem. Photobiol. 137 53 (2000).Google Scholar
27Beydoun, D., Amal, R., Low, G. and McEvoy, S.: Journal of Nanoparticle Research 1 439 (1999).CrossRefGoogle Scholar
28Varghese, O.K., Paulose, M., Gong, D., Grimes, C.A. and Dickey, E.C.: J. Mater. Res. 18 156 (2003).CrossRefGoogle Scholar
29Ohtani, B., Ogawa, Y. and Nishimoto, S.: J. Phys. Chem. B 101 3746 (1997).CrossRefGoogle Scholar
30Pick, M.A., Davenport, J.W., Strongin, M. and Dienes, G.J.: Phys. Rev. Lett. 43 286 (1979).CrossRefGoogle Scholar
31Bodzenta, J., Burak, B., Gacek, Z., Jakubik, W.P., Kochowski, S. and Urbanczyk, M.: Sens. Actuators B 87 82 (2002).CrossRefGoogle Scholar
32Abdullah, M., Low, G.K-C. and Matthews, R.W.: J . Phys. Chem. 94 6820 (1990).CrossRefGoogle Scholar
33Zheng, S., Gao, L., Zhang, Q. and Sun, J.: J. Solid State Chem. 162 138 (2001).CrossRefGoogle Scholar
34Wang, C-M., Heller, A. and Gerischer, H.: J. Am. Chem. Soc. 114 5230 (1992).CrossRefGoogle Scholar
35Papp, J., Shen, H-S., Kershaw, R., Dwight, K. and Wold, A.: Chem. Mater. 5 284 (1993).CrossRefGoogle Scholar
36Wang, C-C., Zhang, Z. and Ying, J.Y.: Nanostruct. Mater. 9 583 (1997).CrossRefGoogle Scholar
37Zhang, Z., Wang, C-C., Zakaria, R. and Ying, J.Y.: J. Phys. Chem. B 102 10871 (1998).CrossRefGoogle Scholar
38Hagfeldt, A. and Graetzel, M.: Chem. Rev. 95 49 (1995).CrossRefGoogle Scholar
39Jaksic, M.M.: International Journal of Hydrogen Energy 26 559 (2001).CrossRefGoogle Scholar
40Zaban, A., Meier, A. and Gregg, B.A.: J. Phys. Chem. B 101 7985 (1997).CrossRefGoogle Scholar
41Lewis, L.N.: Chem. Rev. 93 2693 (1993).CrossRefGoogle Scholar