Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-07T16:24:00.042Z Has data issue: false hasContentIssue false

Role of friction and loading parameters in four-point bend adhesion measurements

Published online by Cambridge University Press:  31 January 2011

David M. Gage
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
Kyunghoon Kim
Affiliation:
Department of Mechanical Engineering, Stanford University, Stanford, California 94305-2205
Christopher S. Litteken
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
Reinhold H. Dauskardt*
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The effects of salient testing parameters on four-point adhesion measurements of thin-film structures on silicon substrates were systematically studied. These included specimen geometry, applied displacement rate, and load point separation. Measured fracture energy values, Gc, were observed to increase as the ratio of applied moment arm to specimen thickness was decreased beyond a value of ∼4, particularly for specimens with Gc > 5 J/m2. Testing parameters that affect the steady-state crack velocity were also found to affect reported Gc values. The resulting trends in Gc values are shown to be related to loading-point friction and environmentally assisted cracking effects. Good practice testing guidelines are suggested to improve the accuracy and precision of four-point bend measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Charalambides, P.G., Lund, J., Evans, A.G.McMeeking, R.M.: A test specimen for determining the fracture resistance of bimaterial interfaces. J. Appl. Mech. 56(1), 77 1989CrossRefGoogle Scholar
2Charalambides, P.G., Cao, H.C., Lund, J.Evans, A.G.: Development of a test method for measuring the mixed-mode fracture resistance of bimaterial interfaces. Mech. Mater. 8(4), 269 1990CrossRefGoogle Scholar
3Dauskardt, R.H., Lane, M., Ma, Q.Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61(1), 141 1998CrossRefGoogle Scholar
4Ma, Q., Fujimoto, H., Flinn, P., Jain, V., Adibi-Rizi, F., Moghadam, F.Dauskardt, R.H.: Quantitative measurement of interface fracture energy in multi-layer thin film structures in Materials Reliability in Microelectronics V,, edited by A.S. Oates, W.F. Filter, R. Rosenberg, A.L. Greer, and K. Gadepally, (Mater. Res. Soc. Symp. Proc. 391, Pittsburgh, PA, 1995), p. 91CrossRefGoogle Scholar
5Ma, Q., Bumgarner, J., Fujimoto, H., Lane, M.Dauskardt, R.H.: Adhesion measurement of interfaces in multilayer interconnect structures in Materials Reliability in Microelectronics VII,, edited by J.J. Clement, R.R. Keller, K.S. Krisch, J.E. Sanchez, Jr., and Z. Suo (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), p. 3CrossRefGoogle Scholar
6Ma, Q.: A four-point bending technique for studying subcritical crack growth in thin films and at interfaces. J. Mater. Res. 12(3), 840 1997CrossRefGoogle Scholar
7Lane, M., Dauskardt, R.H., Vainchtein, A.Gao, H.: Plasticity contributions to interface adhesion in thin-film interconnect structures. J. Mater. Res. 15(12), 2758 2000CrossRefGoogle Scholar
8Guyer, E.P., Patz, M.Dauskardt, R.H.: Fracture of nanoporous methyl silsesquioxane thin-film glasses. J. Mater. Res. 21(4), 882 2006CrossRefGoogle Scholar
9Maidenberg, D.A., Volksen, W., Miller, R.D.Dauskardt, R.H.: Toughening of nanoporous glasses using porogen residuals. Nat. Mater. 3(7), 464 2004CrossRefGoogle ScholarPubMed
10Litteken, C.S.Dauskardt, R.H.: Adhesion of polymer thin-films and patterned lines. Int. J. Fract. 119(4-2), 475 2003CrossRefGoogle Scholar
11Ohashi, K.L., Romero, A.C., McGowan, P.D., Maloney, W.J.Dauskardt, R.H.: Adhesion and reliability of interfaces in cemented total joint arthroplasties. J. Orthop. Res. 16(6), 705 1998CrossRefGoogle ScholarPubMed
12Hutchinson, J.W.Suo, Z.: Mixed mode cracking in layered materials in Advances in Applied Mechanics, edited by J.W. Hutchinson and T.Y. Yu Academic Press New York 1991 63–191Google Scholar
13Shaviv, R., Roham, S.Woytowitz, P.: Optimizing the precision of the four-point bend test for the measurement of thin film adhesion. Microelectron. Eng. 82(2), 99 2005CrossRefGoogle Scholar
14Cook, R.Liniger, E.: Stress-corrosion cracking of low-dielectric constant spin-on-glass thin films. J. Electrochem. Soc. 146(12), 4439 1999CrossRefGoogle Scholar
15Wiederhorn, S.M.: Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50(8), 407 1967CrossRefGoogle Scholar
16Guyer, E.P.Dauskardt, R.H.: Effect of solution ph on subcritical crack growth in low-k dielectric thin-films. J. Mater. Res. 20(3), 680 2005CrossRefGoogle Scholar
17Vlassak, J.J., Lin, Y.Tsui, T.Y.: Fracture of organosilicate glass thin films: Environmental effects. Mater. Sci. Eng., A 391(1-2), 159 2005CrossRefGoogle Scholar
18Lane, M.W., Snodgrass, J.M.Dauskardt, R.H.: Environmental effects on interfacial adhesion. Microelectron. Reliab. 41(9-10), 1615 2001CrossRefGoogle Scholar
19Michalske, T.A.Freiman, S.W.: A molecular mechanism for stress corrosion in vitreous silica. J. Am. Ceram. Soc. 66(4), 284 1983CrossRefGoogle Scholar
20Hohlfelder, R.J., Maidenberg, D.A., Dauskardt, R.H., Wei, Y.G.Hutchinson, J.W.: Adhesion of benzocyclobutene-passivated silicon in epoxy layered structures. J. Mater. Res. 16(1), 243 2001CrossRefGoogle Scholar
21Cui, Z.J., Ngo, S.Dixit, G.: A sample preparation method for four point bend adhesion studies. J. Mater. Res. 19(5), 1324 2004CrossRefGoogle Scholar
22Lane, M., Ware, R., Voss, S., Ma, Q., Fujimoto, H.Dauskardt, R.H.: Progressive debonding of multilayer interconnect structures in Materials Reliability in Microelectronics VII,, edited by J.J. Clement, R.R. Keller, K.S. Krisch, J.E. Sanchez, Jr., and Z. Suo (Mater. Res. Soc. Symp. Proc. 473, Pittsburgh, PA, 1997), p. 21CrossRefGoogle Scholar
23Lane, M., Dauskardt, R.H., Krishna, N.Hashim, I.: Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15(1), 203 2000CrossRefGoogle Scholar