Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T17:11:58.308Z Has data issue: false hasContentIssue false

RETRACTED – Formation and properties of Zr-based bulk quasicrystalline alloys with high strength and good ductility

Published online by Cambridge University Press:  31 January 2011

A. Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
T. Zhang
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
M. W. Chen
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
T. Sakurai
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
J. Saida
Affiliation:
Inoue Superliquid Glass Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Sendai 982–0807, Japan
M. Matsushita
Affiliation:
Inoue Superliquid Glass Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Sendai 982–0807, Japan
Get access

Abstract

The crystallization mode of the Zr–Al–Ni–Cu amorphous alloys changed from a single stage to become two stages by the addition of Ag or Pd, and the first-stage exothermic reaction was found to result from the precipitation of nanoscale icosahedral particles with a size of 20 to 50 nm. The precipitation took place by high nucleation and low growth rates in a polymorphous mode for the Ag-containing alloys, and a diffusioncontrolled mode for the Pd-containing alloys. The nanoscale mixed structure alloys exhibited improved strength and ductility as compared with the corresponding amorphous single-phase alloys. The findings of the dispersion strengthening as well as the dispersion ductilization gave a future opportunity to fabricate a new bulk nonequilibrium phase alloy by use of the new phenomenon.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Inoue, A., Ohtera, K., Kita, K., and Masumoto, T., Jpn. J. Appl. Phys. 27, L2248 (1988).CrossRefGoogle Scholar
2. Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans., JIM 30, 965 (1989).CrossRefGoogle Scholar
3. Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans., JIM 31, 177 (1990).Google Scholar
4. Masumoto, T., Inoue, A., Yamaguchi, H., and Kita, K., Japan Applied Patent, No. 7–122120 (1989).Google Scholar
5. Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
6. Inoue, A., Shinohara, Y., and Gook, J.S., Mater. Trans., JIM 36, 1427 (1995).CrossRefGoogle Scholar
7. Inoue, A., Nishiyama, N., and Matsuda, T., Mater. Trans., JIM 37, 181 (1996).CrossRefGoogle Scholar
8. Inoue, A., Zhang, T., and Itoi, T., Mater. Trans., JIM 38, 359 (1997).CrossRefGoogle Scholar
9. Wang, X.M., Yoshii, I., Inoue, A., Kim, Y.H., and Kim, I.B., Mater. Trans., JIM 40, 1130 (1999).CrossRefGoogle Scholar
10. Wang, X.M., Yoshii, I., and Inoue, A., Mater. Trans., JIM 41, 539 (2000).CrossRefGoogle Scholar
11. Shen, B.L., Koshiba, H., Mizushima, T., and Inoue, A., Mater. Trans., JIM 41, 873 (2000).CrossRefGoogle Scholar
12. Ohnugi, M., Inoue, A., Yamaguchi, T., Minamiguchi, H., and Iwata, K., Materia Japan 38, 251 (1999).Google Scholar
13. Johnson, W.L., MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
14. Inoue, A., Mater. Trans., JIM 36, 866 (1995).CrossRefGoogle Scholar
15. Inoue, A., Bulk Amorphous Alloys (Trans Tech Publications, Zurich, 1998), p. 1.Google Scholar
16. Inoue, A., Acta Mater. 48, 277 (2000).Google Scholar
17. Köster, U., Meinhardt, J., Roos, R., and Liebertz, H., Appl. Phys. Lett. 69, 179 (1996).CrossRefGoogle Scholar
18. Xing, L.Q., Eckert, J., Löser, W., and Schultz, L., Appl. Phys. Lett. 74, 664 (1999).CrossRefGoogle Scholar
19. Murty, B.S., Ping, D.H., Hono, K., and Inoue, A., Appl. Phys. Lett. 76, 55 (2000).Google Scholar
20. Chen, M.W., Zhang, T., Inoue, A., Sakai, A., and Sakurai, T., Appl. Phys. Lett. 75, 1697 (1999).CrossRefGoogle Scholar
21. Inoue, A., Zhang, T., Saida, J., Matsubara, M., Chen, M.W., and Sakurai, T., Mater. Trans., JIM 40, 1137 (1999).Google Scholar
22. Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M.W., and Sakurai, T., Mater. Trans., JIM 40, 1181 (1999).Google Scholar
23. Inoue, A., Zhang, T., Chen, M.W., and Sakurai, T., Mater. Trans., JIM 40, 1382 (1999).CrossRefGoogle Scholar
24. Inoue, A., Saida, J., Matsushita, M., and Sakurai, T., Mater. Trans., JIM 41, 362 (2000).CrossRefGoogle Scholar
25. Inoue, A., Kawase, D., Tsai, A.P., Zhang, T., and Masumoto, T., Mater. Sci. Eng. A178, 255 (1994).CrossRefGoogle Scholar
26. Chen, L.C. and Spaepen, F., Nature 336, 366 (1988).Google Scholar
27. Inoue, A., Zhang, T., Saida, J., Matsushita, M., and Sakurai, T., Mater. Trans., JIM (in press).Google Scholar
28. Matsushita, M., Saida, J., Zhang, T., Inoue, A., Chen, M.W., and Sakurai, T., Philos. Mag. Lett. 80, 79 (2000).CrossRefGoogle Scholar
29. Saida, J., Matsushita, M., Li, C., and Inoue, A., Philos. Mag. Lett. (in press).Google Scholar
30. Johnson, W.A. and Mehl, M., Trans. Am. Inst. Min. Eng. 135, 416 (1939).Google Scholar
31. Saida, J., Matsushita, M., and Inoue, A., Mater. Trans., JIM (in press).Google Scholar
32. Köster, U., Key Eng. Mater. 81–83, 647 (1993).CrossRefGoogle Scholar
33. Köster, U., Meinhardt, J., Roos, S., and Busch, R., Mater. Sci. Eng. A226–228, 995 (1997).CrossRefGoogle Scholar
34. Holzer, J.C. and Kelton, K.F., Acta Metall. Mater. 39, 1833 (1991).CrossRefGoogle Scholar
35. Drehman, A.J., Pelton, A.R., and Noack, M.A., J. Mater. Res. 1, 741 (1986).CrossRefGoogle Scholar
36. Inoue, A., Zhang, T., Saida, J., Matsushita, M., and Sakurai, T., Appl. Phys. Lett. 76, 967 (2000).CrossRefGoogle Scholar