Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T20:49:06.179Z Has data issue: false hasContentIssue false

Repair of dentin defects from DSPP knockout mice by PILP mineralization

Published online by Cambridge University Press:  26 January 2016

Hamid Nurrohman
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California 94143, USA
Kunkio Saeki
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California 94143, USA
Karina M.M. Carneiro
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California 94143, USA
Yung-Ching Chien
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California 94143, USA
Sabra Djomehri
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California 94143, USA
Sunita P. Ho
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California 94143, USA
Chunlin Qin
Affiliation:
Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, Texas 75246, USA
Laurie B. Gower
Affiliation:
Department of Materials Science & Engineering, University of Florida, Gainesville, Florida 32611, USA
Sally J. Marshall
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California 94143, USA
Grayson W. Marshall
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California 94143, USA
Stefan Habelitz*
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California 94143, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Dentinogenesis imperfecta type II (DGI-II) lacks intrafibrillar mineral with severe compromise of dentin mechanical properties. A Dspp knockout (Dspp–/–) mouse, with a phenotype similar to that of human DGI-II, was used to determine if poly-L-aspartic acid [poly(ASP)] in the “polymer-induced liquid-precursor” (PILP) system can restore its mechanical properties. Dentin from six-week old Dspp–/– and wild-type mice was treated with CaP solution containing poly(ASP) for up to 14 days. Elastic modulus and hardness before and after treatment were correlated with mineralization from Micro x-ray computed tomography (Micro-XCT). Transmission electron microscopy (TEM)/Selected area electron diffraction (SAED) were used to compare matrix mineralization and crystallography. Mechanical properties of the Dspp–/– dentin were significantly less than wild-type dentin and recovered significantly (P < 0.05) after PILP-treatment, reaching values comparable to wild-type dentin. Micro-XCT showed mineral recovery similar to wild-type dentin after PILP-treatment. TEM/SAED showed repair of patchy mineralization and complete mineralization of defective dentin. This approach may lead to new strategies for hard tissue repair.

Type
Biomineralization and Biomimetics Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Michelle L. Oyen

References

REFERENCES

Kinney, J.H., Pople, J.A., Driessen, C.H., Breunig, T.M., Marshall, G.W., and Marshall, S.J.: Intrafibrillar mineral may be absent in dentinogenesis imperfecta type II (DI-II). J. Dent. Res. 80(6), 1555 (2001).CrossRefGoogle ScholarPubMed
Kinney, J.H., Habelitz, S., Marshall, S.J., and Marshall, G.W.: The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J. Dent. Res. 82(12), 957 (2003).CrossRefGoogle ScholarPubMed
Deshpande, A.S., Fang, P.A., Zhang, X., Jayaraman, T., Sfeir, C., and Beniash, E.: Primary structure and phosphorylation of dentin matrix protein 1 (DMP1) and dentin phosphophoryn (DPP) uniquely determine their role in biomineralization. Biomacromolecules 12(8), 2933 (2011).CrossRefGoogle ScholarPubMed
Gibson, M.P., Zhu, Q., Liu, Q., D'Souza, R.N., Feng, J.Q., and Qin, C.: Loss of dentin sialophosphoprotein leads to periodontal diseases in mice. J. Periodontal Res. 48(2), 221 (2013).CrossRefGoogle ScholarPubMed
Kim, J.W., Nam, S.H., Jang, K.T., Lee, S.H., Kim, C.C., Hahn, S.H., Hu, J.C., and Simmer, J.P.: A novel splice acceptor mutation in the DSPP gene causing dentinogenesis imperfecta type II. Hum. Genet. 115(3), 248 (2004).CrossRefGoogle ScholarPubMed
Kim, J.W., Hu, J.C., Lee, J.I., Moon, S.K., Kim, Y.J., Jang, K.T., Lee, S.H., Kim, C.C., Hahn, S.H., and Simmer, J.P.: Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II. Hum. Genet. 116(3), 186 (2005).CrossRefGoogle ScholarPubMed
Sreenath, T., Thyagarajan, T., Hall, B., Longenecker, G., D'Souza, R., Hong, S., Wright, J.T., MacDougall, M., Sauk, J., and Kulkarni, A.B.: Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III. J. Biol. Chem. 278(27), 24874 (2003).CrossRefGoogle ScholarPubMed
Olszta, M.J., Odom, D.J., Douglas, E.P., and Gower, L.B.: A new paradigm for biomineral formation: Mineralization via an amorphous liquid-phase precursor. Connect. Tissue Res. 44(Suppl 1), 326 (2003).CrossRefGoogle ScholarPubMed
Gower, L.B.: Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108(11), 4551 (2008).CrossRefGoogle ScholarPubMed
Tay, F.R. and Pashley, D.H.: Guided tissue remineralisation of partially demineralised human dentine. Biomaterials 29(8), 1127 (2008).CrossRefGoogle ScholarPubMed
Nudelman, F., Pieterse, K., George, A., Bomans, P.H., Friedrich, H., Brylka, L.J., Hilbers, P.A., de with, G., and Sommerdijk, N.A.: The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 9(12), 1004 (2010).CrossRefGoogle ScholarPubMed
Nurrohman, H., Nakashima, S., Takagaki, T., Sadr, A., Nikaido, T., Asakawa, Y., Uo, M., Marshall, S.J., and Tagami, J.: Immobilization of phosphate monomers on collagen induces biomimetic mineralization. Bio-med. Mater. Eng. 25(1), 89 (2015).CrossRefGoogle ScholarPubMed
Habelitz, S., Marshall, G.W. Jr., Balooch, M., and Marshall, S.J.: Nanoindentation and storage of teeth. J. Biomech. 35(7), 995 (2002).CrossRefGoogle ScholarPubMed
Burwell, A.K., Thula-Mata, T., Gower, L.B., Habelitz, S., Kurylo, M., Ho, S.P., Chien, Y.C., Cheng, J., Cheng, N.F., Gansky, S.A., Marshall, S.J., and Marshall, G.W.: Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PLoS One 7(6), e38852 (2012).CrossRefGoogle ScholarPubMed
Habelitz, S., Balooch, M., Marshall, S.J., Balooch, G., and Marshall, G.W. Jr.: In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J. Struct. Biol. 138(3), 227 (2002).CrossRefGoogle ScholarPubMed
Bertassoni, L.E., Habelitz, S., Marshall, S.J., and Marshall, G.W.: Mechanical recovery of dentin following remineralization in vitro—An indentation study. J. Biomech. 44(1), 176 (2011).CrossRefGoogle ScholarPubMed
Djomehri, S.I., Candell, S., Case, T., Browning, A., Marshall, G.W., Yun, W., Lau, S.H., Webb, S., and Ho, S.P.: Mineral density volume gradients in normal and diseased human tissues. PLoS One 10(4), e0121611 (2015).CrossRefGoogle ScholarPubMed
Nurrohman, H., Nikaido, T., Takagaki, T., Sadr, A., Ichinose, S., and Tagami, J.: Apatite crystal protection against acid-attack beneath resin-dentin interface with four adhesives: TEM and crystallography evidence. Dent. Mater. 28(7), e89 (2012).CrossRefGoogle ScholarPubMed
Zavgorodniy, A.V., Rohanizadeh, R., and Swain, M.V.: Ultrastructure of dentine carious lesions. Arch. Oral Biol. 53(2), 124 (2008).CrossRefGoogle ScholarPubMed
Thula-Mata, T., Burwell, A., Gower, L.B., Habeliz, S., and Marshall, G.W.: Remineralization of artificial dentin lesions via the polymer-induced liquid-precursor (PILP) process. Mater. Res. Soc. Symp. Proc. 1355, 1114 (2011).CrossRefGoogle ScholarPubMed
Habelitz, S., Hsu, T., Hsiao, P., Saeki, K., Chien, Y.C., Marshall, S.J., and Marshall, G.W.: The natural process of biomineralization and in-vitro remineralization of dentin lesions. 1. Advances in bioceramics and biotechnologies II. Ceram. Trans. 247, 13 (2014).CrossRefGoogle Scholar
Balooch, M., Habelitz, S., Kinney, J.H., Marshall, S.J., and Marshall, G.W.: Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J. Struct. Biol. 162(3), 404 (2008).CrossRefGoogle ScholarPubMed
Bertassoni, L.E., Habelitz, S., Kinney, J.H., Marshall, S.J., and Marshall, G.W. Jr.: Biomechanical perspective on the remineralization of dentin. Caries Res. 43(1), 70 (2009).CrossRefGoogle ScholarPubMed
Levin, L.S., Leaf, S.H., Jelmini, R.J., Rose, J.J., and Rosenbaum, K.N.: Dentinogenesis imperfecta in the brandywine isolate (DI type III): Clinical, radiologic, and scanning electron microscopic studies of the dentition. Oral Surg., Oral Med., Oral Pathol. 56(3), 267 (1983).CrossRefGoogle ScholarPubMed
Fang, P.A., Verdelis, K., Yang, X., Lukashova, L., Boskey, A.L., and Beniash, E.: Ultrastructural organization of dentin in mice lacking dentin sialo-phosphoprotein. Connect. Tissue Res. 55(Suppl 1), 92 (2014).CrossRefGoogle ScholarPubMed
Sun, J., Chen, C., Pan, H., Chen, Y., Mao, C., Wang, W., Tang, R., and Gu, X.: Biomimetic promotion of dentin remineralization using L-glutamic acid: Inspiration from biomineralization proteins. J. Mater. Chem. B 2, 4544 (2014).CrossRefGoogle ScholarPubMed