Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T13:21:57.451Z Has data issue: false hasContentIssue false

Relation of starting precursors to the resulting high-Tc phases in the Pb and Sb doped Bi—Sr—Ca—Cu—O system

Published online by Cambridge University Press:  03 March 2011

F. Constantinescu
Affiliation:
Institute of Optoelectronics, Bucharest-Magurele, Romania
R. Holiastou
Affiliation:
Institute of Materials Science, NCSR “Demokritos”, Attiki 15310, Greece
D. Niarchos
Affiliation:
Institute of Materials Science, NCSR “Demokritos”, Attiki 15310, Greece
G.K. Nicolaides
Affiliation:
Institute of Materials Science, NCSR “Demokritos”, Attiki 15310, Greece
F. Vasiliu
Affiliation:
Research Institute for Aircraft Materials (INCREST), Romania
C. Bunescu
Affiliation:
METAV S.A., Bucharest, Romania
G. Aldica
Affiliation:
Institute of Physics and Technology of Materials, Bucharest-Magurele, Romania
Get access

Abstract

The introduction of more reactive precursors for Pb and Sr (oxalates), as well as Ca (citrate) and the use of a Bi nitrate decomposition route, has increased the percentage of the high-Tc (2223) phase in the Bi—Sr—Ca—Cu—O (BSCCO) system. Partial substitution of Bi(Pb) with Sb gives an almost single (2223) phase sample. In addition, a single (2212) phase sample is obtained when high purity Bi2O3 is used as a precursor, whereas Bi acetate leads to semiconducting behavior. The morphology of the samples is studied with a scanning electron microscope (SEM), the stoichiometry with energy-dispersive x-ray analysis (EDAX), and the structure with x-ray diffraction (XRD), while the superconducting properties are investigated by dc-resistivity, ac-susceptibility, and SQUID magnetometry techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Green, S. M., Jiang, C., Mei, Y., Luo, H. L., and Politis, C., Phys. Rev. 38, 5016 (1988).CrossRefGoogle Scholar
2Takano, M., Takada, J., Oda, K., Kitaguchi, H., Miura, Y., Ikeda, Y., Momii, Y., and Mazaki, H., Jpn. J. Appl. Phys. 27, L1041 (1988).CrossRefGoogle Scholar
3Endo, U., Koyama, S., and Kawai, T., Jpn. J. Appl. Phys. 27, L1476 (1988).CrossRefGoogle Scholar
4Pissas, M., Nikolaides, G. K., Psycharis, V., and Niarchos, D., Physica C 196, 157 (1992).CrossRefGoogle Scholar
5Pissas, M., Niarchos, D., Christides, C., and Anagnostou, M., Supercond. Sci. Technol. 3, 128 (1990).CrossRefGoogle Scholar
6Gardwell, D. A., Cockbaum, J. M., and Whatmore, A. W., Supercond. Sci. Technol. 2, 132 (1991).CrossRefGoogle Scholar
7Castro, A., Enjabert, R., Esparza, D., Galy, J., Resinas, I., and Rovetto, M. L., Physica C 185–189, 457 (1991).CrossRefGoogle Scholar
8de la Fuente, G. F., Sotelo, A., Huang, Y., Ruiz, M. T., Badia, A., Angurel, L. A., Lera, F., Navarro, R., Rillo, C., Ibáñez, R., Beltran, D., Sapina, F., and Beltran, A., Physica C 185–189, 509 (1991).CrossRefGoogle Scholar
9Chen, F. H., Koo, H. S., Tseng, T. Y., Liu, R. S., and Wu, P. T., Mater. Lett. 8, 228 (1989).CrossRefGoogle Scholar
10Wang, H. H., Wang, C. M., Kao, H. C. I, Ling, D. C., Ku, H. C., and Lii, K. H., Jpn. J. Appl. Phys. 28, 1505 (1989).CrossRefGoogle Scholar
11Sinha, S. K., Gadkari, S. C., Subharwal, S. C., Gupta, L. C., and Gubta, M. K., Physica C 185, 499 (1991).Google Scholar
12Tanaka, K., Nozue, A., and Kamiya, K., Jpn. J. Appl. Phys. 28, L934 (1989).CrossRefGoogle Scholar
13Vasiliu, F., Constantinescu, F., and Bunescu, C., Mater. Lett. (1993, in press).Google Scholar