Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T10:12:57.283Z Has data issue: false hasContentIssue false

Reductive/expansion synthesis of zero valent submicron and nanometal particles

Published online by Cambridge University Press:  28 February 2011

Hugo Zea
Affiliation:
Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogota, Colombia
Claudia C. Luhrs
Affiliation:
University of New Mexico, Department of Mechanical Engineering, Albuquerque, New Mexico 87131
Jonathan Phillips*
Affiliation:
University of New Mexico, Department of Mechanical Engineering, Albuquerque, New Mexico 87131; and Los Alamos National Laboratory, Los Alamos, New Mexico 87544
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Upon rapid heating to a high temperature (~800 °C), mixtures of nitrate compounds and urea created nano and submicron metal particles. The process (reductive/expansion synthesis, RES) results in atomic scale mixing. The product formed from mixed-nitrate (Fe + Ni) salts and urea created true metallic alloy. Unlike other product-from-powder synthesis processes, this process produced only zero valent metal. Initial work suggests this method is a scalable and efficient means for making metallic nanoparticles. Although this is primarily a phenomenological report, a preliminary model is presented: Initially, nitrates decompose to oxide; thus in the absence of urea metal oxide particles form, as in the case of combustion synthesis. In the case of urea/nitrate mixtures, there is a “convolution” of decomposition processes. Urea decomposes to yield reducing gases, leading to the formation of metal rather than oxide. Rapid “expansion” of gas leads to “shattering,” resulting in highly dispersed particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mulder, W.J.M., Strijkers, G.J., vanTilborg, G.A.F., Griffioen, A.W., and Nicolay, K.: Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed. 19, 142 (2006).CrossRefGoogle ScholarPubMed
2.McHenry, M.E., Majetich, S.A., and Kirkpatrick, E.M.: Synthesis, structure, properties and magnetic applications of carbon-coated nanocrystals produced by a carbon arc. Mater. Sci. Eng. A 204, 19 (1995).CrossRefGoogle Scholar
3.Bulte, J.W.M. and Modo, M.M.J.: Nanoparticles in Biomedical Imaging: Emerging Technologies and Applications (Springer-Verlag, New York, 2008).Google Scholar
4.Phillips, J.: Plasma generation of supported metal catalysts. U.S. Patent No. 5,989,648 (1999).Google Scholar
5.Phillips, J., Shim, S., Fonseca, I.M., and Carabineiro, S.: Plasma generation of supported metal catalysts. Appl. Catal. 237, 41 (2002).Google Scholar
6.Zea, H., Chen, C-K., Lester, K., Phillips, A., Datye, A., Fonseca, I., and Phillips, J.: Plasma torch generation of carbon supported metal catalysts. Catal. Today 89, 237 (2004).CrossRefGoogle Scholar
7.Phillips, J., Cheng, L., Luhrs, C., Zea, H., Courtney, M., and Hanson, C.: Plasma torch production of Ti–Al nanoparticles, in Nanophase and Nanocomposite Materials V, edited by Komarneni, S., Kaneko, K., Parker, J.C., and O’Brien, P. (Mater. Res. Soc. Symp. Proc. 1056E, Warrendale, PA, 2008), HH0842.Google Scholar
8.Phillips, J., Luhrs, C., and Fanson, P.: Production of complex cerium–aluminum oxides using an atmospheric pressure plasma torch. Langmuir 23, 7055 (2007).Google Scholar
9.Phillips, J., Luhrs, C., Peng, C., and Fanson, P.: Engineering aerosol through-plasma torch ceramic particulate structures: Influence of precursor composition. J. Mater. Res. 23, 1870 (2008).CrossRefGoogle Scholar
10.Phillips, J., Luhrs, C.C., and Richard, M.: Engineering particles using the aerosol-through-plasma method. IEEE Transactions on Plasmas 37, 726 (2009).CrossRefGoogle Scholar
11.Messing, G.L., Zhang, S.C., and Jayanthi, G.V.: Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76, 2707 (1993).CrossRefGoogle Scholar
12.Gurav, A., Kodas, T., Pluym, T., and Xiong, Y.: Aerosol processing of materials. Aerosol Sci. Technol. 19, 411 (1993).CrossRefGoogle Scholar
13.Mueller, R., Jossen, R., Pratsinis, S.E., Watson, M., and Akhtar, M.K.: Zirconia nanoparticles made in spray flames at high production rates. J. Am. Ceram. Soc. 87, 197 (2004).Google Scholar
14.Strobel, R. and Pratsinis, S.E.: Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 17, 4743 (2007).CrossRefGoogle Scholar
15.Grass, R.N. and Stark, W.: Gas phase synthesis of fcc-cobalt nanoparticles. J. Mater. Chem. 16, 1825 (2006).CrossRefGoogle Scholar
16.Gong, W., Li, H., Zhao, Z.G., and Chen, J.C.: Ultrafine particles of Fe, Co, and Ni ferromagnetic metals. J. Appl. Phys. 69, 5119 (1991).CrossRefGoogle Scholar
17.Panda, S. and Pratsinis, S.E.: Modeling the synthesis of aluminum particles by evaporation–condensation in an aerosol flow reactor. Nanostruct. Mater. 5, 755 (1995).CrossRefGoogle Scholar
18.Fecht, H.J.: Synthesis and properties of nanocrystalline metals and alloys prepared by mechanical attrition. Nanostruct. Mater. 1, 125 (1992).CrossRefGoogle Scholar
19.Haas, V. and Birringer, R.: The morphology and size of nanostructured Cu, Pd and W generated by sputtering. Nanostruct. Mater. 1, 491 (1992).CrossRefGoogle Scholar
20.Eastman, J.A., Thompson, L.J., and Marshall, D.J.: Synthesis of nanophase materials by electron beam evaporation. Nanostruct. Mater. 2, 377 (1993).CrossRefGoogle Scholar
21.Herley, P.J. and Jones, W.: Nanoparticle generation by electron beam induced atomization of binary metal azides. Nanostruct. Mater. 2, 553 (1993).Google Scholar
22.Recknagle, K., Xia, Q., Chung, J.N., Crowe, C.T., Hamilton, H., and Collins, G.S.: Properties of nanocrystalline zinc produced by gas condensation. Nanostruct. Mater. 4, 103 (1994).CrossRefGoogle Scholar
23.Chen, J.P., Sorensen, C.M., Klabunde, K.J., Hadjipanayis, G.C., Devlin, E., and Kostikas, A.: Enhanced magnetization of nanoscale colloidal cobalt particles. Phys. Rev. B, Condens. Matter 51(11), 527 (1995).CrossRefGoogle ScholarPubMed
24.Yamamoto, T. and Mazumder, J.: Synthesis of nanocrystalline NbAl3 by laser ablation technique. Nanostruct. Mater. 7, 305 (1996).CrossRefGoogle Scholar
25.Majima, T., Miyahara, T., Haneda, K., Ishii, T., and Takami, M.: Preparation of iron ultrafine particles by the dielectric breakdown of Fe(CO)5 using a transversely excited atmospheric CO2 laser and their characteristics. Jpn. J. Appl. Phys. 33, 4759 (1994).CrossRefGoogle Scholar
26.Sawada, Y., Kageyama, Y., Iwata, M., and Tasaki, A.: Synthesis and magnetic properties of ultrafine iron particles prepared by pyrolysis of carbonyl iron. Jpn. J. Appl. Phys. 31, 3858 (1992).CrossRefGoogle Scholar
27.AlHaik, M., Hanson, C., Luhrs, C., Tehrani, M., Phillips, J., and Miltenberger, S.: Synthesis and characterisation of nano alumina dental filler. Int. J. Nano and Biomaterials 1, 411 (2008).Google Scholar
28.Luhrs, C.C., Phillips, J., and Fanson, P.: Production of unique structures using the aerosol through plasma process. WIT Trans. Built Environ. 97, 63 (2008).CrossRefGoogle Scholar
29.Luhrs, C.C., Cheng, L., Phillips, J., and Fanson, P.: Plasma generation of nanoparticles for high temperature composite applications. Int. J. Mater. Struct. Integrity. 2/3, 247 (2009).Google Scholar
30.Brockner, W., Ehrhardt, C., and Gjikaj, M.: Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2 6H2O in comparison with Co(NO3)2 6H2O and Ca(NO3)2 4H2O. Thermochim. Acta 456, 64 (2007).CrossRefGoogle Scholar
31.Elmasry, M.A.A., Gaber, A., and Khater, E.M.H.: Thermal decomposition of Ni(II) and Fe(III) nitrates and their mixtures. J. Therm. Anal. 52, 489 (1998).Google Scholar
32.Hofer, L.J.E., Cohn, E.M., and Peebles, W.C.: Isothermal decomposition of nickel carbide. J. Phys. Chem. 54, 1161 (1950).Google Scholar
33.Teleki, A., Wengeler, R., Wengeler, L., Nirschi, H., and Pratsinix, S.E.: Distinguishing between aggregates and agglomerates of fame-made TiO2 by high-pressure dispersion. Powder Technol. 181, 292 (2008).CrossRefGoogle Scholar
34.Schaber, P.A., Colson, J., Higgins, S., Thielen, D., Anspach, B., and Brauer, J.: Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 424, 131 (2004).CrossRefGoogle Scholar
35.Kostyuk, N.N.: Thermolysis of urea complexes of uranyl nitrate. Radiochemistry 47, 153 (2004).CrossRefGoogle Scholar
36.Koebel, M. and Elsener, M.: Determination of urea and its thermal decomposition products by high-performance liquid chromatography. J. Chrom. A 689, 164 (1995).CrossRefGoogle Scholar
37.Fang, H.L. and DaCosta, H.F.M.: Urea thermolysis and NOx reduction with and without SCR catalyst. Appl. Catal. B 46, 17 (2003).CrossRefGoogle Scholar
38.Nakajima, F. and Hamada, I.: The state-of-the-art technology of NOx control. Catal. Today 29, 109 (1996).CrossRefGoogle Scholar
39.Gladden, J.R.: Ammonia/fuel ratio control system for reducing nitrogen oxide emissions. U.S. Patent No. 4,403,473 (1981).Google Scholar
40.Epperly, W.R., Peter-Hoblyn, J.D., Shulof, G.F. Jr., Sullivan, J.C., Sprague, B.N., and O’Leary, J.H.: Multi-stage process for reducing the concentration of pollutants in an effluent. U.S. Patent No. 5,057,293 (1991).Google Scholar
41.Luftglass, B.K., Sun, W.H., and Hofmann, J.E.: Catalytic/non-catalytic combination process for nitrogen oxides reduction. U.S. Patent No. 5,139,754 (1992).Google Scholar
42.Sun, W.H., Hofmann, J.E., and Lin, M.L.: Highly efficient hybrid process for nitrogen oxides reduction. U.S. Patent No. 5,286,467 (1994).Google Scholar
43.Gibbons, F.X., Huhmann, A.L., and Wallace, A.J.: Hybrid SCR/SNCR process. U.S. Patent No. 5,853,683 (1998).Google Scholar
44.Koebel, M., Elsener, M., and Klemann, M.: Urea-SCR: A promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today 59(3–4), 335 (2000).Google Scholar
45.Koebel, M., Elsener, M., and Madia, G.: Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperatures. Ind. Eng. Chem. Res. 40(1), 52 (2001).Google Scholar
46.Wang, T.J., Baek, S.W., Lee, S.Y., Kang, D.H., and Yeo, G.K.: Experimental investigation on evaporation of urea-water solution droplet for SCR applications. AlCHE J. 55(12), 3267 (2009).Google Scholar
47.Varma, A. and Lebrat, J.P.: Combustion synthesis of advanced materials. Chem. Eng. Sci. 47, 2179 (1992).CrossRefGoogle Scholar
48.Deshpande, K., Mukasyan, A., and Varma, A.: Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties. Chem. Mater. 16, 4896 (2004).CrossRefGoogle Scholar
49.Jovic, M., Dasic, M., Holl, K., Ilic, D., and Mentus, S.: Gel-combustion synthesis of CoSb2O6 and its reduction to powdery Sb2Co alloy. J. Serb. Chem. Soc. 74, 53 (2009).CrossRefGoogle Scholar
50.Garcia, R., Hirata, G.A., and McKittrick, J.: New combustion synthesis technique for the production of (InxGa 1−x)2O3 powders: Hydrazine/metal nitrate method. J. Mater. Res. 16, 1059 (2001).CrossRefGoogle Scholar
51.Dutta, A., Patra, S., Bedekar, V., Tyagi, A.K., and Basu, R.N.: Nanocrystalline gadolinium doped ceria: Combustion synthesis and electrical characterization. J. Nanosci. Nanotechnol. 9, 3075 (2009).CrossRefGoogle ScholarPubMed
52.Mandal, B., Dutta, A., Deshpande, S.K., Basu, R.N., and Tyagi, A.K.: Nanocrystalline Nd2−yGdyZr2O7 pyrochlore: Facile synthesis and electrical characterization. J. Mater. Res. 24, 2855 (2009).Google Scholar
53.Jurca, B., Paraschi, C., Ianculescu, A., and Carp, O.: Thermal behaviour of the system Fe(NO3)3·9H2O–Bi5O(OH)9(NO3)4·9H2O–glycine/urea and of their generated oxides (BiFeO3). J. Therm. Anal. Calorim. 97, 91 (2009).CrossRefGoogle Scholar
54.Ianos, R., Lazau, I., and Pacurariu, C.: Metal nitrate/fuel mixture reactivity and its influence on the solution combustion synthesis of γ-LiAlO2. J. Therm. Anal. Calorim. 97, 209 (2009).CrossRefGoogle Scholar
55.Mangalaraja, R.V., Ananthakumar, S., Mouzon, J., Uma, K., Lopez, M., Camurri, C.P., and Oden, M.: Synthesis of nanocrystalline yttria through in-situ sulphated-combustion technique. J. Ceram. Soc. Jpn. 117, 1065 (2009).CrossRefGoogle Scholar
56.Martirosyan, K.S., Wang, L., Vicent, A., and Luss, D.: Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use. Nanotechnology 20, 405609 (2009).CrossRefGoogle ScholarPubMed
57.Ningthoujam, V.R.S., Shukla, R., Vatsa, R.K., Duppel, V., Kienle, L., and Tyagi, A.K.: Gd2O3:Eu3+ particles prepared by glycine-nitrate combustion: Phase, concentration, annealing, and luminescence studies. J. Appl. Phys. 105, 084304 (2009).Google Scholar
58.Munir, Z.A.R., Lai, W., and Ewald, K.H.: Field assisted combustion synthesis. U.S. Patent No. 5,380,409 (1995).Google Scholar
59.Feng, A., Orling, T., and Munir, Z.A.R.: Field activated pressure assisted combustion synthesis of polycrystalline Ti3SiC2. J. Mater. Res. 14, 925 (1999).Google Scholar
60.Jiang, G., Zhuang, H., and Li, W.: Combustion synthesis of tungsten carbides under electric field II: Field activated pressure assisted combustion synthesis. Ceram. Int. 30, 191 (2004).CrossRefGoogle Scholar
61.Phillips, J., Shiina, T., Nemer, M., and Lester, K.: Graphitic structures by design. Langmuir 22, 9694 (2006).Google Scholar
62.Luhrs, C., Phillips, J., Richard, M., and Stamm, K.: Material with core-shell structure-2. U.S. Patent Application 20,090,317,719 (2009).Google Scholar
63.Atwater, M.A., Phillips, J., and Leseman, Z.C.: Formation of carbon nanofibers and thin films catalyzed by palladium in ethylene-hydrogen mixtures. J. Phys. Chem. 114, 5804 (2010).Google Scholar
64.Atwater, M.A., Phillips, J., Doorn, S.K., Luhrs, C.C., Diez, Y.F., Menendez, J.A., and Leseman, Z.C.: Palladium catalyzed growth of carbon nanofibers and thin films in a partial combustion environment. Carbon 47, 2269 (2009).Google Scholar