Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T12:54:04.496Z Has data issue: false hasContentIssue false

Recrystallization of ion-implanted α-SiC

Published online by Cambridge University Press:  31 January 2011

H. G. Bohn
Affiliation:
Institut für Festkörperforschung, Kernforschungsanlage Jülich, Postfach 1913, D-5170 Jülich, Federal Republic of Germany
J. M. Williams
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
C. J. McHargue
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
G. M. Begun
Affiliation:
Oak Ridge National Laboratory, P.O. Box X, Oak Ridge, Tennessee 37831
Get access

Abstract

The annealing behavior of ion-implanted α-SiC single crystal was determined for samples implanted with 62 keV 14N to doses of 5.5X1014/cm2 and 8.0X1016/cm2 and with 260 keV 52Cr to doses of 1.5X1014/cm2 and 1.0X1016/cm2. The high-dose samples formed amorphous surface layers to depths of 0.17 μm (N) and 0.28 μm (Cr), while for the low doses only highly damaged but not randomized regions were formed. The samples were isochronically annealed up to 1600°C, holding each temperature for 10 min. The remaining damage was analyzed by Rutherford backscattering of 2 MeV He+, Raman scattering, and electron channeling. About 15% of the width of the amorphous layers regrew cpitaxially from the underlying undamaged material up to 1500°C, above which the damage annealed rapidly in a narrow temperature interval. The damage in the crystalline samples annealed linearly with temperature and was unmeasurable above 1000°C.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Marsh, O. J., in Silicon Carbide–1973, edited by Marshall, R. C., Faust, J. W. Jr., and Ryan, C. E. (University of South Carolina, Columbia, 1974), pp. 471–85.Google Scholar
2Matzke, Hj. and Koniger, M., Phys. Status Solidi A1, 469 (1970).CrossRefGoogle Scholar
3Marsh, O. J. and Dunlap, H. L., Radiat. Eff. 6, 301 (1970).CrossRefGoogle Scholar
4Choyke, W. J. and Patrick, L., Phys. Rev. B 4, 1843 (1971).CrossRefGoogle Scholar
5Hart, R. R., Dunlap, H. L., and Marsh, O. J., Radiat. Eff. 9, 261 (1971).CrossRefGoogle Scholar
6Addamiano, A., Anderson, G. W., Comas, J., Hughes, H. L., and Lucke, W., J. Electrochem. Soc. 119, 1355 (1972).CrossRefGoogle Scholar
7Patrick, L. and Choyke, W. J., Phys. Rev. B 5, 3253 (1972); J. Phys. Chem. Solids 34, 565 (1972).CrossRefGoogle Scholar
8Makarov, V. V., Fiz. Tverd. Tela 13, 2357 (1971); [Sov. Phys. Solid State 13, 1974 (1972)].Google Scholar
9Campbell, A. B., Shewchun, J., Thompson, D. A., Davies, J. A., and Mitchell, J. B., in Ion Implantation in Semiconductors, edited by Namba, S. (Plenum, New York, 1975), pp. 291–97.CrossRefGoogle Scholar
10Thompson, D. A., Chan, M. C., and Campbell, A. B., Can. J. Phys. 54, 626 (1976).CrossRefGoogle Scholar
11Wright, R. B., Varma, R., and Gruen, D. M., J. Nucl. Mater. 63, 415 (1976).CrossRefGoogle Scholar
12Wright, R. B. and Gruen, D. M., Radiat. Eff. 33, 133 (1977).CrossRefGoogle Scholar
13Gruen, D. M., Varma, R., and Wright, R. B., J. Chem. Phys. 64, 5000 (1976).CrossRefGoogle Scholar
14Makarov, V. V., Tuomi, T., and Naukkarinen, K., Appl. Phys. Lett. 35, 922 (1979).CrossRefGoogle Scholar
15Spitznagel, J. A., Wood, S., Choyke, W. J., Doyle, N. J., Bradshaw, J., and Fishman, S. G., Nucl. Instrum. Methods Phys. Res. B 16, 237 (1986).CrossRefGoogle Scholar
16McHargue, C. J. and Williams, J. M., in Metastable Materials Formation by Ion Implantation, edited by Picraux, S. T. and Choyke, W. J. (Elsevier, New York, 1982), pp. 303–09.Google Scholar
17Williams, J. M., McHargue, C. J., and Appleton, B. R., Nucl. Instrum. Methods 209/210, 317 (1983).CrossRefGoogle Scholar
18Ziegler, J. F., Helium Stopping Powers and Ranges in All Elemental Matter (Pergamon, New York, 1977).Google Scholar
19Appleton, B. R. and Foti, G., in Ion Beam Handbook for Material Analysis, edited by Mayer, J. W. and Rimini, E. (Academic, New York, 1977), pp. 6975.Google Scholar
20Sklad, P. S., Angelini, P., McHargue, C. J., and Williams, J. M., in the Proceedings of the 42nd Annual Meeting of the Electron Microscopy Society of America (San Francisco, San Francisco, 1984), pp. 416–17.Google Scholar
21Sklad, P. S. (privatecommunication).Google Scholar
22Chu, W. K., Crowder, B. L., Mayer, J. W., and Ziegler, J. F., Appl. Phys. Lett. 22, 490 (1973).CrossRefGoogle Scholar
23Appleton, B. R. and Foti, G., in Ion Beam Handbook for Material Analysis, edited by Mayer, J. W. and Rimini, E. (Academic, New York, 1977), p. 80.Google Scholar
24Elman, B. S., Braunstein, G., Dresselhaus, M. S., Dresselhaus, G., Venkatensan, T., and Gibson, J. M., Phys. Rev. B 29, 4703 (1984).CrossRefGoogle Scholar
25Gorman, M. and Solin, S. A., Solid State Commun. 15, 761 (1974); Y. Inoue, S. Nakashima, A. Mitsuishi, S. Tabata, and S. Tsuboi, Solid State Commun. 48, 1071 (1983).CrossRefGoogle Scholar
26Feldmann, D. W., Parker, J. H., Choyke, W. J., and Patrick, L., Phys. Rev. 170, 698 (1968).CrossRefGoogle Scholar
27Fagen, E. A., in Ref. 1, pp. 542–49.Google Scholar