Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T16:15:01.419Z Has data issue: false hasContentIssue false

Reaction engineering of CVD methylammonium bismuth iodide layers for photovoltaic applications

Published online by Cambridge University Press:  06 February 2019

Dominik Stümmler*
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Aachen 52074, Germany
Simon Sanders
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Aachen 52074, Germany
Felix Gerstenberger
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Aachen 52074, Germany
Pascal Pfeiffer
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Aachen 52074, Germany
Gintautas Simkus
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Aachen 52074, Germany; and AIXTRON SE, Herzogenrath 52134, Germany
Peter K. Baumann
Affiliation:
APEVA SE, Herzogenrath 52134, Germany
Michael Heuken
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Aachen 52074, Germany; and AIXTRON SE, Herzogenrath 52134, Germany
Andrei Vescan
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Aachen 52074, Germany
Holger Kalisch
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Aachen 52074, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the past years, numerous alternative cations to replace Pb2+ in perovskite solar cells have been investigated. In terms of toxicity and chemical stability, methylammonium bismuth iodide [(CH3NH3)3Bi2I9 or MBI] containing the Bi3+ cation has been considered as a promising material. However, fabrication of coherent MBI films remains challenging. Recently, significant progress has been achieved by using vapor deposition processes. Compared with solution-processed ones, vapor-deposited MBI solar cells show higher fill factors and efficiencies. In this work, chemical vapor deposition (CVD) of MBI is investigated. Employing nitrogen as carrier gas, the precursors bismuth iodide (BiI3) and methylammonium iodide (MAI) are deposited sequentially over several cycles and form MBI during the process. In order to form dense and coherent layers, the lengths of the deposition cycles as well as the substrate temperature have been optimized. Scanning electron microscopy reveals the strong influence of both parameters on growth and crystal properties. Optimized films of MBI integrated into solar cells show that CVD of MBI is a promising method for fabricating large-area solar cells.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 51). Prog. Photovoltaics 26, 312 (2018).CrossRefGoogle Scholar
Babayigit, A., Ethirajan, A., Muller, M., and Conings, B.: Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247251 (2016).CrossRefGoogle ScholarPubMed
Giustino, F. and Snaith, H.J.: Toward lead-free perovskite solar cells. ACS Energy Lett. 1, 12331240 (2016).CrossRefGoogle Scholar
Hoye, R.L.Z., Brandt, R.E., Osherov, A., Stevanović, V., Stranks, S.D., Wilson, M.W.B., Kim, H., Akey, A.J., Perkins, J.D., Kurchin, R.C., Poindexter, J.R., Wang, E.N., Bawendi, M.G., Bulović, V., and Buonassisi, T.: Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber. Chemistry 22, 26052610 (2016).CrossRefGoogle ScholarPubMed
Hu, H., Dong, B., and Zhang, W.: Low-toxic metal halide perovskites. J. Mater. Chem. A 5, 1143611449 (2017).CrossRefGoogle Scholar
Zhang, Z., Li, X., Xia, X., Wang, Z., Huang, Z., Lei, B., and Gao, Y.: High-quality (CH3NH3)3Bi2I9 film-based solar cells. J. Phys. Chem. Lett. 8, 43004307 (2017).CrossRefGoogle ScholarPubMed
Stümmler, D., Sanders, S., Pfeiffer, P., Weingarten, M., Vescan, A., and Kalisch, H.: Direct chemical vapor phase deposition of organometal halide perovskite layers. MRS Adv. 2, 11891194 (2017).CrossRefGoogle Scholar
Dualeh, A., Gao, P., Seok, S.I., Nazeeruddin, M.K., and Grätzel, M.: Thermal behavior of methylammonium lead-trihalide perovskite photovoltaic light harvesters. Chem. Mater. 26, 61606164 (2014).CrossRefGoogle Scholar
Kim, J.H. and Blairs, S.: Sublimation study of BiI3. J. Chem. Thermodyn. 22, 803814 (1990).CrossRefGoogle Scholar
Costa, J.C.S., Azevedo, J., Santos, L.M.N.B.F., and Mendes, A.: On the deposition of lead halide perovskite precursors by physical vapor method. J. Phys. Chem. C 121, 20802087 (2017).CrossRefGoogle Scholar
White, F.M.: Viscous Fluid Flow, 3rd ed. (McGraw-Hill, Boston, Massachusetts, 2006).Google Scholar
Chen, X., Myung, Y., Thind, A., Gao, Z., Yin, B., Shen, M., Cho, S.B., Cheng, P., Sadtler, B., Mishra, R., and Banerjee, P.: Atmospheric pressure chemical vapor deposition of methylammonium bismuth iodide thin films. J. Mater. Chem. A 5, 2472824739 (2017).CrossRefGoogle Scholar
Nagabhushana, G.P., Shivaramaiah, R., and Navrotsky, A.: Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites. Proc. Natl. Acad. Sci. U. S. A. 113, 77177721 (2016).CrossRefGoogle ScholarPubMed
Wang, B., Young Wong, K., Xiao, X., and Chen, T.: Elucidating the reaction pathways in the synthesis of organolead trihalide perovskite for high-performance solar cells. Sci. Rep. 5, 10557 (2015).CrossRefGoogle ScholarPubMed
Cuña, A., Aguiar, I., Gancharov, A., Pérez, M., and Fornaro, L.: Correlation between growth orientation and growth temperature for bismuth tri-iodide films. Cryst. Res. Technol. 39, 899905 (2004).CrossRefGoogle Scholar
Levenspiel, O.: Chemical Reaction Engineering, 3rd ed. (Wiley, Hoboken, New Jersey, 1999).Google Scholar
Zhou, Y. and Padture, N.P.: Gas-induced formation/transformation of organic–inorganic halide perovskites. ACS Energy Lett. 2, 21662176 (2017).CrossRefGoogle Scholar
Li, H., Wu, C., Yan, Y., Chi, B., Pu, J., Li, J., and Priya, S.: Fabrication of lead-free (CH3NH3)3Bi2I9 perovskite photovoltaics in ethanol solvent. ChemSusChem 10, 39943998 (2017).CrossRefGoogle Scholar
Ma, S., Islam, S.M., Shim, Y., Gu, Q., Wang, P., Li, H., Sun, G., Yang, X., and Kanatzidis, M.G.: Highly efficient iodine capture by layered double hydroxides intercalated with polysulfides. Chem. Mater. 26, 71147123 (2014).CrossRefGoogle Scholar
Liang, L. and Gao, P.: Lead-free hybrid perovskite absorbers for viable application. Adv. Sci. 131, 1700331 (2017).Google Scholar
Lyu, M., Yun, J-H., Cai, M., Jiao, Y., Bernhardt, P.V., Zhang, M., Wang, Q., Du, A., Wang, H., Liu, G., and Wang, L.: Organic–inorganic bismuth(III)-based material. Nano Res. 9, 692702 (2016).CrossRefGoogle Scholar
Supplementary material: File

Stümmler et al. supplementary material

Stümmler et al. supplementary material 1

Download Stümmler et al. supplementary material(File)
File 16.5 KB