Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T11:02:21.137Z Has data issue: false hasContentIssue false

Rare gas bubbles in muscovite mica implanted with xenon and krypton

Published online by Cambridge University Press:  03 March 2011

G.A. Hishmeh
Affiliation:
Department of Materials Science and Engineering, Marquette University, Milwaukee, Wisconsin 53233
L. Cartz
Affiliation:
Department of Materials Science and Engineering, Marquette University, Milwaukee, Wisconsin 53233
F. Desage
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, Poitiers Cedex 86022, France
C. Templier
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, Poitiers Cedex 86022, France
J.C. Desoyer
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, Poitiers Cedex 86022, France
R.C. Birtcher
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Xenon and krypton have been implanted into muscovite mica at room temperature and at liquid nitrogen temperature. The behavior of the implanted Xe and Kr was followed by low-temperature transmission electron microscopy and energy dispersive x-ray analysis. An electron diffraction pattern of diffuse bands is observed at room temperature due to the presence of fluid rare gas and to noncrystalline mica. Visible cavities with diameters 10–300 nm formed in the Xe-implanted mica. Visible cavities in room-temperature Kr-implanted mica ranged from 5–50 nm in diameter. The gas pressures at room temperature in the cavities are estimated, assuming all of the implanted gas precipitated in cavities to be ∼10 MPa for Xe and ∼20 MPa for Kr. These pressures are considerably lower than found for rare gases implanted in metals and ceramics, but sufficient to liquefy the rare gases at room temperature. The Xe and Kr were observed by dark-field microscopy to form fcc crystalline solids within the cavities at temperatures below their triple points, with lattice parameters of a(xe) = 0.630 ± 0.0015 nm and a(Kr) = 0.565 ± 0.005 nm. The solid Xe within bubbles was unstable under the electron beam of the transmission electron microscope at temperatures above 80 K, while the solid Kr within bubbles was unstable at temperatures as low as 35 K. The crystalline mica matrix undergoes a transformation from a crystalline structure to an amorphous structure as a result of implantation.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Templier, C., Inert Gas Bubbles in Metals: A Review, Fundamental Aspects of Inert Gases in Solids, edited by Donnelly, S. E. and Evans, J. H. (Plenum Press, New York, 1991), pp. 117132.Google Scholar
2Evans, J. H., Nucl. Instrum. Methods B18, 16 (1986).Google Scholar
3Norton, M. G., Carter, C. B., Fleischer, E. L., and Mayer, J. W., J. Mater. Res. 7, 3171 (1992).Google Scholar
4Norton, M. G., Fleischer, E. L., Hertl, W., Carter, C. B., and Mayer, J. W., Phys. Rev. B 43, 9291 (1991).Google Scholar
5Fleischer, E. L., Norton, M. G., Zaleski, M. A., Hertl, W., Carter, C. B., and Mayer, J. W., J. Mater. Res. 6, 1905 (1991).Google Scholar
6Norton, M. G., Fleischer, E. L., Hertl, W., Carter, C. B., and Mayer, J. W., Nucl. Instrum. Methods B 59/60, 1215 (1991).CrossRefGoogle Scholar
7Hishmeh, G., Cartz, L., Karioris, F. G., Templier, C., Chaumont, J., and Clerc, C., J. Am. Ceram. Soc. 76, 343 (1993).Google Scholar
8Karioris, F. G., Cartz, L., Hishmeh, G., Yang, X., and Templier, C., in Mica-Gas Composites as Thermal Actuators: Smart Materials, edited by Varada, V.K. (SPIE Proc. 1916, Albuquerque, NM, 1993), p. 255.Google Scholar
9Cartz, L., Karioris, F. G., and Yang, X., in Phlogopite Micas as ThermalActuators, edited by Holland, D. (Inst. Phys. Conf., 1989), Vol. 11, p. 507.Google Scholar
10Hishmeh, G. A., Ph.D. Thesis, Marquette University, Milwaukee, WI (1993).Google Scholar
11Xu, Q., M. S. Thesis, Marquette University, Milwaukee, WI (1992).Google Scholar
12Yang, X., M. S. Thesis, Marquette University, Milwaukee, WI (1990).Google Scholar
13Bailey, S. W., Micas: Reviews in Mineralogy (Miner. Soc. Amer., 1987), Vol. 13, pp. 112.Google Scholar
14Smith, J. V. and Yoder, H. S., Min. Mag. 31, 209 (1956).Google Scholar
15Guggenheim, S., Dept. of Geological Sciences, University of Illinois at Chicago.Google Scholar
16Biersack, J. P. and Haggmerk, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
17Thornburg, D. D. and Wayman, C. M., Phys. Status Solidi (A) 15, 449 (1973).CrossRefGoogle Scholar
18Vasilyev, E. K. and Lapides, I. L., Kristall. Technik. 15, 231 (1963).Google Scholar
19Eberhart, J. P., Bull. Soc. France Minér. Crist. 86, 213 (1963).Google Scholar
20Eby, R. K., Ph.D. Thesis, University of New Mexico, Albuquerque, NM (1990).Google Scholar
21Eby, R. K., Ewing, R. C., and Birtcher, R. C., J. Mater. Res. 7, 3080 (1992).Google Scholar
22Tubalov, N. P., Izv. Vyssh. Uchebn. Zaved. Fiz. 1, 118 (1972).Google Scholar
23Ruheman, and Simon, , Z. Phys. Chem. 15, 389 (1931–1932).Google Scholar
24Guinier, A., X-ray Diffraction (Freeman, San Francisco, CA, 1963).Google Scholar
25Wykoff, R. W. G., Crystal Structures (Interscience, New York, 1963).Google Scholar
26Klein, M. L. and Venables, J. A., Rare Gas Solids (Academic Press, New York, 1977), pp. 12.Google Scholar
27Dartyge, E., Reynaud, B., and Roualt, M. O., Radiat. Eff. 41, 115 (1979).Google Scholar
28Heinemann, K., in A Comment on Mica as Electron Microscope Specimen Support Film, edited by Arceneaux, C. J. (EMSA Proc. 28, Houston, TX, 1970), p. 526.Google Scholar
29Thon, F., Z. Naturforsch. 21A, 477 (1966).Google Scholar
30Desage, F., Templier, C., Garem, H., Hishmeh, G., and Cartz, L., unpublished.Google Scholar
31Ronchi, C., J. Nucl. Mater. 96, 314 (1981).CrossRefGoogle Scholar
32McHargue, C. J., Defects and Diffusion Forum 57/58, 359 (1988).Google Scholar