Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T17:06:36.575Z Has data issue: false hasContentIssue false

Raman studies of optical phonons in vertical cadmium sulfide nanorod arrays

Published online by Cambridge University Press:  03 March 2011

Dongjuan Xi
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90095
Jianzhong Li
Affiliation:
SETI Institute, NASA Ames Research Center, Moffett Field, California 94035
Qibing Pei
Affiliation:
Department of Materials Science and Engineering, University of California, Los Angeles, California 90095
Bin Chen*
Affiliation:
SETI Institute, NASA Ames Research Center, Moffett Field, California 94035
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Electrochemically grown cadmium sulfide (CdS) nanorod arrays were studied with Raman spectroscopy. The resonant Raman spectroscopy unravels the enhanced electron-phonon interaction up to the fifth-order multiphonon process in the vertically aligned CdS nanorods after annealing. Resonant Raman scattering at room temperature reveals a surface phonon mode at 253 cm−1 in the annealed nanorod. This unprecedented observation is accounted for by the lateral confinement in the nanorod whose average aspect ratio is approximately 5. An intersubband transition near 3000 cm−1 is also observed. These results point to important optoelectronic applications of this material.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Agarwal, R., Barrelet, C.J., Lieber, C.M.: Lasing in single cadmium sulfide nanorod optical cavities. Nano Lett. 5(5), 917(2005).CrossRefGoogle ScholarPubMed
2.Mahan, G.D., Gupta, R., Xiong, Q., Adu, C.K., Eklund, P.C.: Optical phonons in polar semiconductor nanorods. Phys. Rev. B 68(7), 073402(2003).CrossRefGoogle Scholar
3.Yu, H., Li, J., Loomis, R.A., Wang, L-W., Buhro, W.E.: Two- versus three-dimensional quantum confinement in indium phosphide wires and dots. Natural Materials l2, 517 (2003).CrossRefGoogle Scholar
4.Krahne, R., Chilla, G., Schüller, C., Carbone, L., Kudera, S., Mannarini, G., Manna, L., Heitmann, D., Cingolan, R.: Confinement effects on optical phonons in polar tetrapod nanocrystals detected by resonant inelastic light scattering. Nano Lett. 6(3), 478(2006).CrossRefGoogle ScholarPubMed
5.Singha, A., Roy, A.: Phonon confinement and surface phonon modes in CdS-CdS coreshell nanoocrystals. Rev. Adv. Mater. Sci. 10, 462 (2005).Google Scholar
6.Pan, A.L., Liu, R.B., Yang, Q., Zhu, Y.C., Zuo, J., Zou, B.S.: Stimulated emission behaviors from excitons in CdS nanoribbons. J. Phys.: Conference Series 28, 12 (2006).Google Scholar
7.Yong, H., Seung, P., Dongho, K.: Size-dependent surface phonon mode of CdSe quantum dots. Phys. Rev. B 59, 7285 (1991).Google Scholar
8.Demir, U., Shannon, C.: A scanning tunneling microscopy study of electrochemically grown cadmium sulfide monolayers on Au(ll1). Langmuir 10, 2794 (1999).CrossRefGoogle Scholar
9.Yoshida, T., Yamaguchi, K., Kazitani, T., Sugiura, T., Minoura, H.: Atom-by-atom growth of cadmium sulfide thin films by: Electroreduction of aqueous Cd2+–SCN complex. J. Electroanal. Chem. 473, 209 (1999).CrossRefGoogle Scholar
10.Xi, D. and Pei, Q.: Unpublished results.Google Scholar
11.Tell, B., Damen, T.C., Porto, S.P.S.: Raman effect in cadmium sulfide. Phys. Rev. 144, 771 (1966).CrossRefGoogle Scholar
12.Abdi, A., Titova, L.V., Smith, L.M., Jackson, H.E., Yarrison-Rice, J.M., Lensch, J.L., Lauhon, L.J.: Resonant Raman scattering from CdS nanorods. Appl. Phys. Lett. 88, 043118 (2006).CrossRefGoogle Scholar
13.Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Höpler, R., Dimitrov, R., Ambacher, O., Stutzmann, M.: Optical constants of epitaxial AlGaN films and their temperature dependence. J. Appl. Phys. 82, 5090 (1997).CrossRefGoogle Scholar
14.Ng, H.T., Chen, B., Li, J., Han, J., Meyyappan, M., Wu, J., Li, S.X., Haller, E.E.: Optical properties of single-crystalline ZnO nanorods on m-sapphire. Appl. Phys. Lett. 82(13), 2023(2003).CrossRefGoogle Scholar
15.Koch, S.W., Haug, H., Schmieder, G., Bohnert, W., Klingshirn, C.: Stimulated intrinsic recombination processes in II-VI compounds. Phys. Status Solidi B 89, 431 (1978).CrossRefGoogle Scholar
16.Shen, W.Z.: Exciton-longitudinal-optical phonon coupling in quantum wire and quantum dots. Physica B 322, 201 (2002).CrossRefGoogle Scholar
17.Pan, A.L., Liu, R.B., Yang, Q., Zhu, Y.C., Zuo, J., Zou, B.S.: Stimulated emission behaviors from excitons in CdS nanoribbons. J. Phys.: Conference Series 28, 12 (2006).Google Scholar
18.Wang, Y., Meng, G., Zhang, L., Liang, C., Zhang, J.: Catalytic growth of large-scale single-crystal CdS nanorods by physical evaporation and their photoluminescence. Chem. Mater. 14, 1773 (2002).CrossRefGoogle Scholar
19.Zhao, Q., Zhang, H., Xu, X., Wang, Z., Xu, J., Yua, D.: Optical properties of highly ordered AlN nanorod arrays grown on sapphire substrate. Appl. Phys. Lett. 86, 193101 (2005).CrossRefGoogle Scholar
20.Balandin, A., Wang, K.L., Kouklin, N., Bandyopadhyay, S.: Raman spectroscopy of electrochemically self-assembled CdS quantum dots. Appl. Phys. Lett. 76(2), 137(2000).CrossRefGoogle Scholar