Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T15:42:47.877Z Has data issue: false hasContentIssue false

Radiation stability of nanocrystalline single-phase multicomponent alloys

Published online by Cambridge University Press:  20 February 2019

Emil Levo*
Affiliation:
Department of Physics, University of Helsinki, Helsinki, FIN-00014, Finland
Fredric Granberg*
Affiliation:
Department of Physics, University of Helsinki, Helsinki, FIN-00014, Finland
Daniel Utt
Affiliation:
Fachgebiet Materialmodellierung, Institut für Materialwissenschaft, TU Darmstadt, D-64287 Darmstadt, Germany
Karsten Albe
Affiliation:
Fachgebiet Materialmodellierung, Institut für Materialwissenschaft, TU Darmstadt, D-64287 Darmstadt, Germany
Kai Nordlund
Affiliation:
Department of Physics, University of Helsinki, Helsinki, FIN-00014, Finland
Flyura Djurabekova
Affiliation:
Helsinki Institute of Physics, University of Helsinki, FIN-00014, Finland; Department of Physics, University of Helsinki, Helsinki, FIN-00014, Finland; and Department of Plasma Physics, National Research Nuclear University MEPHI, 31 Moscow, Russia
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

In search of materials with better properties, polycrystalline materials are often found to be superior to their respective single crystalline counterparts. Reduction of grain size in polycrystalline materials can drastically alter the properties of materials. When the grain sizes reach the nanometer scale, the improved mechanical response of the materials make them attractive in many applications. Multicomponent solid-solution alloys have shown to have a higher radiation tolerance compared with pure materials. Combining these advantages, we investigate the radiation tolerance of nanocrystalline multicomponent alloys. We find that these alloys withstand a much higher irradiation dose, compared with nanocrystalline Ni, before the nanocrystallinity is lost. Some of the investigated alloys managed to keep their nanocrystallinity for twice the irradiation dose as pure Ni.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yeh, J-W., Chen, S-K., Lin, S-J., Gan, J-Y., Chin, T-S., Shun, T-T., Tsau, C-H., and Chang, S-Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299303 (2004).CrossRefGoogle Scholar
Tsai, M-H. and Yeh, J-W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107123 (2014).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448511 (2017).CrossRefGoogle Scholar
Chuang, M-H., Tsai, M-H., Wang, W-R., Lin, S-J., and Yeh, J-W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 63086317 (2011).CrossRefGoogle Scholar
Hsu, C-Y., Juan, C-C., Wang, W-R., Sheu, T-S., Yeh, J-W., and Chen, S-K.: On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys. Mater. Sci. Eng., A 528, 35813588 (2011).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 11531158 (2014).CrossRefGoogle ScholarPubMed
Wei, Y., Li, Y., Zhu, L., Liu, Y., Lei, X., Wang, G., Wu, Y., Mi, Z., Liu, J., and Wang, H.: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 5, 3580 (2014).CrossRefGoogle ScholarPubMed
Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).CrossRefGoogle ScholarPubMed
Zhang, Y., Stocks, G.M., Jin, K., Lu, C., Bei, H., Sales, B.C., Wang, L., Béland, L.K., Stoller, R.E., Samolyuk, G.D., Caro, M., Caro, A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nat. Commun. 6, 8736 (2015).CrossRefGoogle ScholarPubMed
Granberg, F., Nordlund, K., Ullah, M.W., Jin, K., Lu, C., Bei, H., Wang, L.M., Djurabekova, F., Weber, W.J., and Zhang, Y.: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116, 135504 (2016).CrossRefGoogle ScholarPubMed
Xia, S.Q., Yang, X., Yang, T.F., Liu, S., and Zhang, Y.: Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67, 23402344 (2015).CrossRefGoogle Scholar
Zhang, Y., Jin, K., Xue, H., Lu, C., Olsen, R.J., Beland, L.K., Ullah, M.W., Zhao, S., Bei, H., Aidhy, D.S., Samolyuk, G.D., Wang, L., Caro, M., Caro, A., Stocks, G.M., Larson, B.C., Robertson, I.M., Correa, A.A., and Weber, W.J.: Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys. J. Mater. Res. 31, 23632375 (2016).CrossRefGoogle Scholar
Levo, E., Granberg, F., Fridlund, C., Nordlund, K., and Djurabekova, F.: Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys. J. Nucl. Mater. 490, 323332 (2017).CrossRefGoogle Scholar
Granberg, F., Djurabekova, F., Levo, E., and Nordlund, K.: Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys. Nucl. Instrum. Methods Phys. Res., Sect. B 393, 114117 (2017).CrossRefGoogle Scholar
Kiran Kumar, N.A.P., Li, C., Leonard, K.J., Bei, H., and Zinkle, S.J.: Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 113, 230244 (2016).CrossRefGoogle Scholar
Lu, C., Niu, L., Chen, N., Jin, K., Yang, T., Xiu, P., Zhang, Y., Gao, F., Bei, H., Shi, S., He, M-R., Robertson, I.M., Weber, W.J., and Wang, L.: Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat. Commun. 7, 13564 (2016).CrossRefGoogle ScholarPubMed
Koch, L., Granberg, F., Brink, T., Utt, D., Albe, K., Djurabekova, F., and Nordlund, K.: Local segregation versus irradiation effects in high-entropy alloys: Steady-state conditions in a driven system. J. Appl. Phys. 122, 105106 (2017).CrossRefGoogle Scholar
Velisa, G., Ullah, M.W., Xue, H., Jin, K., Crespillo, M.L., Bei, H., Weber, W.J., and Zhang, Y.: Irradiation-induced damage evolution in concentrated Ni-based alloys. Acta Mater. 135, 5460 (2017).CrossRefGoogle Scholar
Ullah, M.W., Xue, H., Velisa, G., Jin, K., Bei, H., Weber, W.J., and Zhang, Y.: Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys. Sci. Rep. 7, 4146 (2017).CrossRefGoogle ScholarPubMed
Van Swygenhoven, H. and Weertman, J.R.: Deformation in nanocrystalline metals. Mater. Today 9, 2431 (2006).CrossRefGoogle Scholar
Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427556 (2006).CrossRefGoogle Scholar
Lu, K., Lu, L., and Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349352 (2009).CrossRefGoogle ScholarPubMed
Zou, Y., Wheeler, J.M., Ma, H., Okle, P., and Spolenak, R.: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 15691574 (2017).CrossRefGoogle ScholarPubMed
Liao, W., Lan, S., Gao, L., Zhang, H., Xu, S., Song, J., Wang, X., and Lu, Y.: Nanocrystalline high-entropy alloy CoCrFeNiAl0.3 thin-film coating by magnetron sputtering. Thin Solid Films 638, 383388 (2017).CrossRefGoogle Scholar
Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 9599 (2015).CrossRefGoogle Scholar
Ebrahimi, F., Bourne, G.R., Kelly, M.S., and Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11, 343350 (1999).CrossRefGoogle Scholar
Zhang, S., Nordlund, K., Djurabekova, F., Granberg, F., Zhang, Y., and Wang, T.S.: Radiation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys. Mater. Res. Lett. 5, 433439 (2017).CrossRefGoogle Scholar
Bonny, G., Castin, N., and Terentyev, D.: Interatomic potential for studying ageing under irradiation in stainless steels: The FeNiCr model alloy. Modell. Simul. Mater. Sci. Eng. 21, 085004 (2013).CrossRefGoogle Scholar
Zhao, S., Stocks, G.M., and Zhang, Y.: Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2, and Ni0.8Cr0.2. Phys. Chem. Chem. Phys. 18, 2404324056 (2016).CrossRefGoogle ScholarPubMed
Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. premier mémoire. sur quelques propriétés des formes quadratiques positives parfaites. J. Reine Angew. Math. 133, 97178 (1908).Google Scholar
Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs. J. Reine Angew. Math. 134, 198287 (1908).Google Scholar
Voronoi, G.: Nouvelles applications des paramètres continus à théorie des formes quadratiques. deuxième mémoire. recherches sur les paralléloèdres primitifs. J. Reine Angew. Math. 136, 67182 (1909).Google Scholar
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., and Haak, J.R.: Molecular dynamics with coupling to external bath. J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
Nordlund, K., Ghaly, M., Averback, R.S., Caturla, M., Diaz de la Rubia, T., and Tarus, J.: Defect production in collision cascades in elemental semiconductors and FCC metals. Phys. Rev. B 57, 75567570 (1998).CrossRefGoogle Scholar
Nordlund, K., Keinonen, J., Ghaly, M., and Averback, R.S.: Coherent displacement of atoms during ion irradiation. Nature 398, 4951 (1999).CrossRefGoogle Scholar
Zhou, X.W., Johnson, R.A., and Wadley, H.N.G.: Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B 69, 144113 (2004).CrossRefGoogle Scholar
Purja Pun, G.P., Yamakov, V., and Mishin, Y.: Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2-L10 martensitic transformation. Modell. Simul. Mater. Sci. Eng. 23, 065006 (2015).CrossRefGoogle Scholar
Zhang, S., Nordlund, K., Djurabekova, F., Zhang, Y., Velisa, G., and Wang, T.S.: Simulation of Rutherford backscattering spectrometry from arbitrary atom structures. Phys. Rev. E 94, 043319 (2016).CrossRefGoogle ScholarPubMed
Nordlund, K.: Molecular dynamics simulation of ion ranges in the 1–100 keV energy range. Comput. Mater. Sci. 3, 448 (1995).CrossRefGoogle Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 119 (1995).CrossRefGoogle Scholar
Lammps molecular dynamics simulator. lammps.sandia.gov.Google Scholar
Sadigh, B., Erhart, P., Stukowski, A., Caro, A., Martinez, E., and Zepeda-Ruiz, L.: Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys. Rev. B 85, 184203 (2012).CrossRefGoogle Scholar
Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).CrossRefGoogle Scholar
Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012).CrossRefGoogle Scholar
Stukowski, A., Bulatov, V.V., and Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Modell. Simul. Mater. Sci. Eng. 20, 085007 (2012).CrossRefGoogle Scholar
Supplementary material: PDF

Levo et al. supplementary material

Levo et al. supplementary material 1

Download Levo et al. supplementary material(PDF)
PDF 23.1 MB