Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T05:39:08.119Z Has data issue: false hasContentIssue false

Quantitative analysis of thermal stability of CdSe/CdS core-shell nanocrystals under infrared radiation

Published online by Cambridge University Press:  01 June 2006

A. Singha
Affiliation:
Department of Physics, Indian Institute of Technology, Kharagpur 721 302, West Bengal, India
Anushree Roy*
Affiliation:
Department of Physics, Indian Institute of Technology, Kharagpur 721 302, West Bengal, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Here, we report investigations on the instability in luminescence of bare (trioctylphosphine oxide [TOPO]-stabilized) and CdS-capped CdSe particles under infrared radiation. During thermal annealing under radiation, the formation of oxide layers on the surfaces of the particles create defect states. Consequently, there is a reduction in particle size. These two effects control the light output from the samples. We make a quantitative comparison of the stability of bare CdSe and core-shell-type CdSe-CdS particles during annealing under infrared radiation. Using diffusion theory, we show that the volume of the oxide layer, adhered to the crystallites, plays a dominant role in controlling the luminosity of the particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M.: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21, 47 (2003).Google Scholar
2.Lingerfelt, B.M., Mattoussi, H., Goldman, E.R., Mauro, J.M., Anderson, G.P.: Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. Anal. Chem. 75, 4043 (2003).Google Scholar
3.Goldman, E.R., Clapp, A.R., Anderson, G.P., Uyeda, H.T., Mauso, J.M., Medintz, I.L., Mattoussi, H.: Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76, 684 (2004).Google Scholar
4.Peng, X.G., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019 (1997).Google Scholar
5.Jackson, J.B., Halas, N.J.: Silver nanoshells: Variations in morphologies and optical properties. J. Phys. Chem. B 105, 2743 (2001).Google Scholar
6.Lal, S., Taylor, R.N., Jackson, J.B., Westcott, S.L., Nordlander, P., Halas, N.J.: Light interaction between gold nanoshells plasmon resonance and planar optical waveguides. J. Phys. Chem. B 106, 5609 (2002).CrossRefGoogle Scholar
7.Jackson, J.B., Westcott, S.L., Hirsch, L.R., West, J.L., Halas, N.J.: Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl. Phys. Lett. 82, 257 (2003).CrossRefGoogle Scholar
8.Hines, M.A., Guyot-Sionnest, P.: Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468 (1996).Google Scholar
9.Kortan, A.R., Hull, R., Opila, R.L., Bawendi, G.M., Steigerwald, M.L., Carroll, P.J., Brus, E.L.: Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327 (1990).Google Scholar
10.Tian, Y., Newton, T., Kotov, N.A., Guldi, D.M., Fendler, J.H.: Coupled composite CdS-CdSe and core-shell types of (CdS)CdSe and (CdSe)CdS nanoparticles. J. Phys. Chem. 100, 8927 (1996).Google Scholar
11.Manna, L., Scher, E.C., Li, L-S., Alivisatos, A.P.: Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 124, 7136 (2002).CrossRefGoogle ScholarPubMed
12.Guo, W., Li, J.J., Wang, Y.A., Peng, X.: Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: Superior chemical, photochemical and thermal stability. J. Am. Chem. Soc. 125, 3901 (2003).Google Scholar
13.van Sark, W.G.J.H.M., Frederix, P.L.T.M., Van den Heuvel, D.J., Gerritsen, H.C., Bol, A.A., van Lingen, J.N.J., Mellodonrge, C.D., Meijerink, A.: Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room temperature time-resolved spectroscopy. J. Phys. Chem. B 105, 8281 (2001).Google Scholar
14.Aldana, J., Wang, Y., Peng, X.: Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844 (2001).Google Scholar
15.Pradhan, N., Katz, B., Efrima, S.: Synthesis of high-quality metal sulfide nanoparticles from alkyl xanthate single precursors in alkylamine solvents. J. Phys. Chem. B 107, 13843 (2003).Google Scholar
16.Efros, A.L.L., Efros, A.L.: Interband absorption of light in a semiconductor sphere. Soviet Phys. Semicond. 16, 772 (1982).Google Scholar
17.Brus, L.E.: Electron–electron and electron–hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403 (1984).Google Scholar
18.Katari, J.E.B., Colvin, V.L., Alivisatos, A.P.: X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 98, 4109 (1994).Google Scholar
19.Henglein, A.: Mechanism of reactions of colloidal microelectrodes and size quantization effects. Top. Curr. Chem. 143, 113 (1988).Google Scholar
20.Chestnoy, N., Harris, T.D., Hull, R., Brus, L.E.: Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state. J. Phys. Chem. 90, 3393 (1986).Google Scholar
21.Signorini, L., Pasquini, L., Savini, L., Carboni, R., Boscherini, F., Bonetti, E., Giglia, A., Pedio, M., Mahne, N., Nannarone, S.: Size-dependent oxidation in iron/iron oxide core-shell nanoparticles. Phys. Rev. B 68, 195423 (2003).CrossRefGoogle Scholar