Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T02:31:50.535Z Has data issue: false hasContentIssue false

Pulsed laser deposition of KNbO3 thin films

Published online by Cambridge University Press:  31 January 2011

M. J. Martín
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
J. E. Alfonso
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
J. Mendiola
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
C. Zaldo
Affiliation:
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
D. S. Gill
Affiliation:
Department of Physics and Optoelectronics Research Centre, University of Southampton, Southampton S017 1BJ, United Kingdom
R. W. Eason
Affiliation:
Department of Physics and Optoelectronics Research Centre, University of Southampton, Southampton S017 1BJ, United Kingdom
P. J. Chandler
Affiliation:
School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, United Kingdom
Get access

Abstract

The laser ablation of stationary KNbO3 single crystal targets induces a Nb enrichment of the target surface. In rotated targets this effect is observed only in those areas irradiated with low laser fluence. The composition of the plasma formed close to the target surface is congruent with the target composition; however, at further distances K-deficient films are formed due to the preferential backscattering of K in the plasma. This loss may be compensated for by using K-rich ceramic targets. Best results so far have been obtained with [K]/[Nb] = 2.85 target composition, and crystalline KNbO3 films are formed when heating the substrates to 650 °C. Films formed on (100)MgO single crystals are usually single phase and oriented with the (110) film plane parallel to the (100) substrate surface. (100)NbO may coexist with KNbO3 on (100)MgO. At substrate temperatures higher than 650 °C, niobium diffuses into MgO forming Mg4Nb2O9 and NbO, leading to K evaporation from the film. Films formed on (001) α–Al2O3 (sapphire) show the coexistence of (111), (110), and (001) orientations of KNbO3, and the presence of NbO2 is also observed. KNbO3 films deposited on (001)LiNbO3 crystallize with the (111) plane of the film parallel to the substrate surface. For the latter two substrates the Nb diffusion into the substrate is lower than in MgO and consequently the K concentration retained in the film is comparatively larger.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Manshingh, A., Ferroelectrics 102, 69 (1990).CrossRefGoogle Scholar
2. “Properties of Lithium Niobate,” EMIS Datareviews Series No. 5, INSPEC (1989).Google Scholar
3.Günter, P. and Huignard, J. P., in Photorefractive Materials and Their Applications I, edited by Günter, P. and Huignard, J. P. (Springer-Verlag, Berlin, 1989), Chap. 2.CrossRefGoogle Scholar
4.Baumert, J. C., Günter, P., and Melchior, H., Opt. Commun. 48, 215 (1983).CrossRefGoogle Scholar
5.Handbook of Thin Film Process Technology, edited by Glocker, D. A. and Shah, S. I. (IOP Publishing, Bristol, 1995), pp. X3.4 and X4.2.Google Scholar
6.Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T., and Kawai, S., Jpn. J. Appl. Phys. 32, L745 (1993).CrossRefGoogle Scholar
7.Ogale, S. B., Nawathey-Dikshit, R., and Kanetkar, S. M., J. Appl. Phys. 71, 5718 (1992).CrossRefGoogle Scholar
8.Zaldo, C., Gill, D. S., Eason, R. W., Mendiola, J., and Chandler, P. J., Appl. Phys. Lett. 65, 502 (1994).CrossRefGoogle Scholar
9.Gopalan, V. and Raj, R., J. Am. Ceram. Soc. 78, 1825 (1995).CrossRefGoogle Scholar
10.Christen, H. M., Boatner, L. A., Budai, J. D., Chisholm, M. F., Géa, L. A., Marrero, P. J., and Norton, D. P., Appl. Phys. Lett. 68, 1488 (1996).CrossRefGoogle Scholar
11.Afonso, C. N., Gonzalo, J., Vega, F., Diéguez, E., Wong, J. C. Cheang, Ortega, C., Siejka, J., and Amsel, G., Appl. Phys. Lett. 66, 1452 (1995).CrossRefGoogle Scholar
12.Doolite, L. R., Nucl. Instrum. Methods B 9, 334 (1985).Google Scholar
13.Geohegan, D. B., in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (John Wiley & Sons, New York, 1994), Chap. 5.Google Scholar
14.Mrowec, S., Defects and Diffusion in Solids—An Introduction, Materials Science Monographs (Elsevier, Amsterdam, 1980).Google Scholar
15.Handbook of Chemistry and Physics, 67th ed., edited by Weast, R. C. (CRC Press, Boca Raton, FL, 1987).Google Scholar
16.Pialoux, A., Joyeux, M. L., and Cizeron, G., J. Less-Comm. Met. 87, 1 (1982).CrossRefGoogle Scholar
17.Cheetham, A. K. and Raa, C. N. R., Acta Crystallogr. 32B, 1579 (1976).CrossRefGoogle Scholar
18.Koch, R., J. Phys. Cond. Matt. 6, 9519 (1994).CrossRefGoogle Scholar
19.Cullis, A. G., MRS Bulletin 21, 21 (1996).CrossRefGoogle Scholar
20.Matthews, J. W., J. Vac. Sci. Technol. 12, 126 (1975).CrossRefGoogle Scholar
21.Tomashpolsky, Y. Y. and Sevostianov, M. A., Ferroelectrics 29, 87 (1980).CrossRefGoogle Scholar
22.Wang, S. Z., Xiong, G. C., He, Y. M., Luo, B., Su, W., and Yao, S. D., Appl. Phys. Lett. 59, 1509 (1991).CrossRefGoogle Scholar