Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T17:30:09.476Z Has data issue: false hasContentIssue false

Pulsed laser deposition and thermoelectric properties of In- and Yb-doped CoSb3 skutterudite thin films

Published online by Cambridge University Press:  29 July 2011

S.R. Sarath Kumar
Affiliation:
Materials Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
A. Alyamani
Affiliation:
Nanotechnology Centre, King Abdul Aziz City for Science and Technology, Riyadh 11442, Saudi Arabia
J.W. Graff
Affiliation:
Department of Physics and Astronomy, Clemson University, South Carolina 29634
T.M. Tritt
Affiliation:
Department of Physics and Astronomy, Clemson University, South Carolina 29634
H.N. Alshareef*
Affiliation:
Materials Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In- and Yb-doped CoSb3 thin films were prepared by pulsed laser deposition. Process optimization studies revealed that a very narrow process window exists for the growth of single-phase skutterudite films. The electrical conductivity and Seebeck coefficient measured in the temperature range 300–700 K revealed an irreversible change on the first heating cycle in argon ambient, which is attributed to the enhanced surface roughness of the films or trace secondary phases. A power factor of 0.68 W m−1 K−1 was obtained at ∼700 K, which is nearly six times lower than that of bulk samples. This difference is attributed to grain boundary scattering that causes a drop in film conductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Uher, C.: Semiconductors and Semimetals (Academic Press, New York, 2001).Google Scholar
2.Nolas, G.S., Morelli, D.T., and Tritt, T.M.: Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29, 89 (1999).CrossRefGoogle Scholar
3.Tritt, T.M. and Subramanian, M.A.: Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
4.Nolas, G.S., Slack, G.A., Morelli, D.T., Tritt, T.M., and Ehrlich, A.C.: The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. J. Appl. Phys. 79, 4002 (1996).CrossRefGoogle Scholar
5.Evers, C.B.H., Jeitschko, W., Boonk, L., Braun, D.J., Ebel, T., and Scholz, U.D.: Rare earth and uranium transition metal pnictides with LaFe4P12 structure. J. Alloy. Compd. 224, 184 (1995).CrossRefGoogle Scholar
6.Pei, Y.Z., Bai, S.Q., Zhao, X.Y., Zhang, W., and Chen, L.D.: Thermoelectric properties of EuyCo4Sb12 filled skutterudites. Solid State Sci. 10, 1422 (2008).CrossRefGoogle Scholar
7.Yang, C.P., Wang, H., Iwasa, K., Kohgi, M., Sugawara, H., and Sato, H.: Lattice dynamics of the filled skutterudite CeOs4Sb12. Appl. Phys. Lett. 90, 102503 (2007).CrossRefGoogle Scholar
8.Peng, J.Y., He, J., Alboni, P.N., and Tritt, T.M.: Synthesis and thermoelectric properties of the double-filled skutterudite Yb0.2In (y) Co4Sb12. J. Electron. Mater. 38, 981 (2009).CrossRefGoogle Scholar
9.Peng, J.Y., Alboni, P.N., He, J., Zhang, B., Su, Z., Holgate, T., Gothard, N., and Tritt, T.M.: Thermoelectric properties of (In, Yb) double-filled CoSb3 skutterudite. J. Appl. Phys. 104, 053710 (2008).CrossRefGoogle Scholar
10.Zhao, W.Y., Dong, C.L., Wei, P., Guan, W., Liu, L.S., Zhai, P.C., Tang, X.F., and Zhang, Q.J.: Synthesis and high temperature transport properties of barium and indium double-filled skutterudites BaxInyCo4Sb12-z. J. Appl. Phys. 102, 113708 (2007).CrossRefGoogle Scholar
11.Peng, J.Y., He, J., Su, Z., Alboni, P.N., Zhu, S., and Tritt, T.M.: High temperature thermoelectric properties of double-filled InxYbyCo4Sb12 skutterudites. J. Appl. Phys. 105, 084906 (2009).CrossRefGoogle Scholar
12.Graff, J., Zhu, S., Holgate, T., Peng, J., He, J., and Tritt, T.M.: High-temperature thermoelectric properties of Co4Sb12-based skutterudites with multiple filler atoms: Ce0.1InxYbyCo4Sb12. J. Electron. Mater. 40, 696 (2011).Google Scholar
13.Durand, H.A., Nishimoto, K., Ito, K., and Kataoka, I.: Hyperthermal beams for the fabrication of thermoelectric thin films. Appl. Surf. Sci. 154, 387 (2000).CrossRefGoogle Scholar
14.Song, D.W., Liu, W.L., Zeng, T., Borca-Tasciuc, T., Chen, G., Caylor, J.C., and Sands, T.D.: Thermal conductivity of skutterudite thin films and superlattices. Appl. Phys. Lett. 77, 3854 (2000).CrossRefGoogle Scholar
15.Zeipl, R., Walachova, J., Lorincik, J., Leshkov, S., Josiekova, M., Jelinek, M., Kocourek, T., Jurek, K., Navratil, J., Benes, L., and Plechacek, T.: Properties of thin n-type Yb0.14Co4Sb12 and p-type Ce0.09Fe0.67Co3.33Sb12 skutterudite layers prepared by laser ablation. J. Vac. Sci. Technol., A 28, 523 (2010).Google Scholar
16.Savchuk, V., Schumann, J., Schupp, B., Behr, G., Mattern, N., and Souptel, D.: Formation and thermal stability of the skutterudite phase in films sputtered from Co20Sb80 targets. J. Alloy. Compd. 351, 248 (2003).Google Scholar
17.Caylor, J.C., Stacy, A.M., Gronsky, R., and Sands, T.: Pulsed laser deposition of skutterudite thin films. J. Appl. Phys. 89, 3508 (2001).CrossRefGoogle Scholar
18.Arnache, O., Girata, D., Perez, F., Castro, L.F., Prieto, P., and Lopera, W.: Electrical and structural properties of Ce0.9CoFe3Sb12 thermoelectric thin films. Solid State Commun. 133, 343 (2005).Google Scholar
19.Savchuk, V., Boulouz, A., Chakraborty, S., Schumann, J., and Vinzelberg, H.: Transport and structural properties of binary skutterudite CoSb3 thin films grown by dc magnetron sputtering technique. J. Appl. Phys. 92, 5319 (2002).CrossRefGoogle Scholar
20.Schupp, B., Bacher, I., Hecker, M., Mattern, N., Savchuk, V., and Schumann, J.: Crystallization behavior of CoSb3 and (Co, Fe)Sb3 thin films. Thin Solid Films 434, 75 (2003).CrossRefGoogle Scholar
21.Hornbostel, M.D., Hyer, E.J., Edvalson, J.H., and Johnson, D.C.: Systematic study of new rare earth element iron-antimony skutterudites synthesized using multilayer precursors. Inorg. Chem. 36, 4270 (1997).CrossRefGoogle Scholar
22.Smalley, A.L.E., Kim, S., and Johnson, D.C.: Effects of composition and annealing on the electrical properties of CoSb3. Chem. Mater. 15, 3847 (2003).CrossRefGoogle Scholar
23.Sellinschegg, H., Stuckmeyer, S.L., Hornbostel, M.D., and Johnson, D.C.: Synthesis of metastable post-transition-metal iron antimony skutterudites using he multilayer precursor method. Chem. Mater. 10, 1096 (1998).CrossRefGoogle Scholar
24.Colceag, D., Dauscher, A., Lenoir, B., Da Ros, V., Birjega, R., Moldovan, A., and Dinescu, M.: Pulsed laser deposition of doped skutterudite thin films. Appl. Surf. Sci. 253, 8097 (2007).Google Scholar
25.Caylor, J.C., Sander, M.S., Stacy, A.M., Harper, J.S., Gronsky, R., and Sands, T.: Epitaxial growth of skutterudite (CoSb3) thin films on (001) InSb by pulsed laser deposition. J. Mater. Res. 16, 2467 (2001).Google Scholar
26.Zhao, D., Tian, C., Liu, Y., Zhan, C., and Chen, L.: High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test. J. Alloy. Compd. 509, 3166 (2011).CrossRefGoogle Scholar
27.Leszczynski, J., Wojciechowski, K., and Malecki, A.: Studies on thermal decomposition and oxidation of CoSb3. J. Therm. Anal. Calorim. 1, Online (2011).Google Scholar
28.Godlewska, E., Zawadzka, K., Mars, K., Mania, R., Wojciechowski, K., and Opoka, A.: Protective properties of magnetron-sputtered CrSi layers on CoSb3. Oxid. Met. 74, 205 (2010).Google Scholar
29.Ke, Y.Q., Zahid, F., Timoshevskii, V., Xia, K., Gall, D., and Guo, H.: Resistivity of thin Cu films with surface roughness. Phys. Rev. B 79, 155406 (2009).Google Scholar
30.Hakiki, N.E.: Influence of surface roughness on the semiconducting properties of oxide films formed on 304 stainless steel. J. Appl. Electrochem. 38, 679 (2008).CrossRefGoogle Scholar
31.Marom, H. and Eizenberg, M.: The effect of surface roughness on the resistivity increase in nanometric dimensions. J. Appl. Phys. 99, 123705 (2006).Google Scholar
32.Mi, J.L., Zhao, X.B., Zhu, T.J., Tu, J.P., and Cao, G.S.: Solvothermal synthesis and electrical transport properties of skutterudite CoSb3. J. Alloy. Compd. 417, 269 (2006).Google Scholar