Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T04:29:01.395Z Has data issue: false hasContentIssue false

Protective coatings of nanophase diamond deposited directly on stainless steel substrates

Published online by Cambridge University Press:  31 January 2011

F. Davanloo
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083–0688
H. Park
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083–0688
C. B. Collins
Affiliation:
Center for Quantum Electronics, University of Texas at Dallas, P.O. Box 830688, Richardson, Texas 75083–0688
Get access

Abstract

Composed of sp3 bonded nodules of carbon, nanophase diamond films are deposited in vacuum onto almost any substrate by condensing carbon ions carrying keV energies. These multiply charged ions are obtained from the laser ablation of graphite at intensities in excess of 1011 W cm−2. The high energy of condensation provides both the chemical bonding of such films to a wide variety of substrates and low values of residual compressive stress. Coatings of 2–5 μm thickness have extended lifetimes of materials such as Si, Ti, ZnS, ZnSe, and Ge against the erosive wear from high-speed particles by factors of tens to thousands. In this research emphasis has been placed on studies of the bonding and properties realized by the direct deposition of nanophase diamond films on stainless steel substrates. Examinations of interfacial layers showed deep penetrations of carbon atoms into steel substrates. Resistances to low and high impact wear estimated by a tumbler device and a modified sand blaster, respectively, and results indicated significant increases in the lifetime of stainless steel samples. The characterization studies in this work demonstrated nanophase diamond as an attractive material for use as a protective coating in current industrial applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Collins, C. B., Davanloo, F., Juengerman, E. M., Osborn, W. R., and Jander, D. R., Appl. Phys. Lett. 54, 216 (1989).CrossRefGoogle Scholar
2.Davanloo, F., Juengerman, E.M., Jander, D. R., Lee, T. J., and Collins, C.B., J. Appl. Phys. 67, 2081 (1990).CrossRefGoogle Scholar
3.Davanloo, F., Juengerman, E. J., Jander, D. R., Lee, T. J., and Collins, C.B., J. Mater. Res. 5, 2398 (1990).CrossRefGoogle Scholar
4.Collins, C.B., Davanloo, F., Jander, D. R., Lee, T. J., Park, H., and You, J. H., J. Appl. Phys. 69, 7862 (1991).CrossRefGoogle Scholar
5.Davanloo, F., Lee, T. J., Jander, D.R., Park, H., You, J. H., and Collins, C.B., J. Appl. Phys. 71, 1446 (1992).CrossRefGoogle Scholar
6.Collins, C.B., Davanloo, F., Lee, T. J., Jander, D. R., You, J. H., Park, H., and Pivin, J. C., J. Appl. Phys. 71, 3260 (1992).CrossRefGoogle Scholar
7.Collins, C.B., Davanloo, F., Jander, D.R., Lee, T.J., You, J.H., Park, H., Pivin, J.C., Glejbøl, K., and Thölén, A.R., J. Appl. Phys. 72, 239 (1992).CrossRefGoogle Scholar
8.Stevefelt, J. and Collins, C.B., J. Phys. D 24, 2149 (1991).CrossRefGoogle Scholar
9.Collins, C.B., Davanloo, F., You, J. H., and Park, H., in Laser Applications, edited by Mak, A.A., SPIE Proc. 2097 (1994), p. 129.CrossRefGoogle Scholar
10.Collins, C.B., Davanloo, F., Lee, T.J., You, J.H., and Park, H., in Laser Ablation in Materials Processing: Fundamentals and Applications, edited by Braren, B., Dubowski, J. J., and Norton, D. (Mater. Res. Soc. Symp. Proc. 285, Pittsburgh, PA, 1993), p. 547.Google Scholar
11.Ong, T.P. and Chang, R.P. H., Appl. Phys. Lett. 58, 358 (1990).CrossRefGoogle Scholar
12.Oguri, K. and Arai, T., J. Mater. Res. 5, 2567 (1990).CrossRefGoogle Scholar
13.Chen, H., Nielsen, M. L., Gold, C.J., and Dillon, R.O., in Applications of Diamond Films and Related Materials, edited by Tzeng, Y., Yoshikawa, M., Murakawa, M., and Feldman, A., Proc. ADC'91 Conf. (Elsevier Sci. Publishers, B. V., Amsterdam, 1991), p. 137.Google Scholar
14.Vihersalo, J., Varjus, S., Ehrnsten, U., Zilliacus, R., Saarilahti, J., Nenonen, P., andH. Ronkainen, in Applications of Diamond Films and Related Materials, edited by Yoshikawa, M.Murakawa, M., Tzeng, Y., and Yarbrough, W. A., Proc. ADC'93 Conf. (MYU, Tokyo, 1993), p. 655.Google Scholar
15.Heidarpour, E. and Namba, Y., J. Mater. Res. 8, 2840 (1993).CrossRefGoogle Scholar
16.Sjostrom, H., Hultman, L., Sundgren, J.E., and Wallenberg, L.R., Thin Solid Films 232, 169 (1993).CrossRefGoogle Scholar
17.Dolittle, L.R., Nucl. Instrum. Methods B9, 344 (1985).CrossRefGoogle Scholar
18.Lee, T. J., Park, H., You, J. H., Davanloo, F., and Collins, C. B., Surf. Coat. Technol. 54/55, 581 (1992).CrossRefGoogle Scholar
19.Davanloo, F., Lee, T.J., Park, H., You, J. H., and Collins, C.B., J. Mater. Res. 8, 3090 (1993).CrossRefGoogle Scholar
20.Davanloo, F., Park, H., and Collins, C. B., in Proc. Int. Conf. on Lasers '94 (1996, in press).Google Scholar
21.Collins, C. B., Davanloo, F., You, J. H., and Park, H., Diamond Films Technol. 4, 15 (1994).Google Scholar