Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T00:17:06.739Z Has data issue: false hasContentIssue false

Production of hydroxyapatite-glass compacts by hydrothermal hot-pressing technique

Published online by Cambridge University Press:  31 January 2011

N. Yamasaki
Affiliation:
Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, Kochi-shi, Japan
K. Yanagisawa
Affiliation:
Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, Kochi-shi, Japan
N. Kakiuchi
Affiliation:
Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, Kochi-shi, Japan
Get access

Abstract

Low-temperature sintering (under 350°C) of hydroxyapatite was attempted by a hydrothermal hot-pressing technique. The effects of borosilicate glass addition on the characteristics of the solidified body (mechanical strength, microstructure, crystal structure, pore distribution, etc.) and on the densification process during hydrothermal reaction were investigated. The borosilicate glass increased the mechanical strength of the solidified body; compression of 50% content of apatite was 2100 kg/cm2. It is also shown that water acts as a good catalyzer during solidification under hydrothermal conditions, and micropores can increase toughness of the solidified body due to the adsorption of stress. These hydrothermal hot-pressing solidification processes are so similar to sintering with liquid phase under pressure that the initial kinetics was discussed by means of the velocity measurement of shrinkage rate. In addition, these reactions may proceed in water, and are then discussed from the point of view of a heterogeneous reaction between powder and aqueous solution. It was proposed that the solidification process was due to viscous flow with rearrangement of grains in the solidified body, and the rate-determining step followed a core model of extraction from solid to solution.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Aoki, H., Seramikks 10, 469 (1975).Google Scholar
2Hidaka, T. and Hirayama, Y., Ceramics 17, 619 (1982).Google Scholar
3Momma, H. and Kanazawa, T., Nippon Kagaku Kaishi, 339 (1972).Google Scholar
4Momma, H. and Kanazawa, T., Yogyo Kyokaishi 86, 72 (1978).Google Scholar
5Momma, H., Ueno, S., and Kanazawa, T., Chem. Tech. Biotechnol. 1, 15 (1981).Google Scholar
6Roy, D. M. and Linnehan, S. K., Nature 247, 220 (1974).CrossRefGoogle Scholar
7Rao, W. R. and Boehm, R. F., J. Dent. Res. 53, 1351 (1974).CrossRefGoogle Scholar
8Peelen, J. G. J., Reida, B.V., and Vermeiden, J. P.W., Philips Tech. Rev. 37, 234 (1977).Google Scholar
9Ioku, K., Yoshimura, M., and Somiya, S., J. Ceram. Soc. Jpn. 96, 109 (1988).CrossRefGoogle Scholar
10Kokubo, T., Ito, S., Shigematsu, M., Sakka, S., and Yamamura, T., J. Mater. Sci. 20, 2001 (1985).CrossRefGoogle Scholar
11Kokubo, T., Ito, S., and Sakka, S., J. Mater. Sci. 21, 536 (1986).CrossRefGoogle Scholar
12Moreno, E. C., Gregory, T. M., and Brown, W. E., J. Res. Natl. Bur. Stand. 72A, 773 (1968).Google Scholar
13Atkinson, A., Bramdford, P. A., and Selmes, I. P., J. Appl. Chem. Biotechnol. 23, 517 (1973).CrossRefGoogle Scholar
14Matsuno, S. and Tsukakoshi, T., Sekko to Sekkai 165, 53 (1980).Google Scholar
15Aoki, H. and Kato, K., Shirikoshi 14, 36 (1973).Google Scholar
16Momma, H., Ueno, S., and Tsutsumi, M., Sekko to Sekkai 156, 6 (1978).Google Scholar
17Fowler, B. O., Inorgan. Chem. 13, 194 (1974).CrossRefGoogle Scholar
18Fowler, B.O., Inorgan. Chem. 13, 207 (1974).CrossRefGoogle Scholar
19Yamasaki, N., Yanagisawa, K., Kanahara, S., Nishioka, M., Matsuoka, K., and Yamazaki, J., J. Nucl. Sci. Technol. 21, 71 (1984).CrossRefGoogle Scholar
20Yanagisawa, K., Kanahara, S., Nishioka, M., and Yamasaki, N., J. Nucl. Sci. Technol. 21, 558 (1984).CrossRefGoogle Scholar
21Yanagisawa, K., Nishioka, M., and Yamasaki, N., J. Am. Ceram. Soc. Bull. 64, 1563 (1985).Google Scholar
22Yamasaki, N., Nishioka, M., Yanagisawa, K., and Kanahara, S., Yogyo-Kyokai-shi 93, 151 (1985).CrossRefGoogle Scholar
23Yanagisawa, K., Nishioka, M., and Yamasaki, N., J. Nucl. Sci. Technol. 23, 550 (1986).CrossRefGoogle Scholar
24Nishioka, M., Yanagisawa, K., and Yamasaki, N., Yogyo-Kyokai-shi 94, 1119 (1986).CrossRefGoogle Scholar
25Yamasaki, N., Yanagisawa, K., Nishioka, M., and Kanahara, S., J. Mater. Sci. Lett. 5, 355 (1986).CrossRefGoogle Scholar
26Yamasaki, N., Yanagisawa, K., and Nishioka, M., J. At. Energy Soc. Jpn. 28, 266 (1986).CrossRefGoogle Scholar
27Yanagisawa, K., Nishioka, M., and Yamasaki, N., J. Nucl. Sci. Technol. 24, 51 (1987).CrossRefGoogle Scholar
28Yamasaki, N., Nishioka, M., and Yanagisawa, K., J. At. Energy Soc. Jpn. 30, 815 (1988).CrossRefGoogle Scholar
29Phinney, D. L., Ryerson, F. J., Oversby, V. M., Lanford, W. A., Aines, R. D., and Bates, J. K., Mater. Res. Symp. Proc. 84, 433 (1987).CrossRefGoogle Scholar
30Abrajano, T. A. and Jr. Bates, J. K., Mater. Res. Symp. Proc. 84, 533 (1987).CrossRefGoogle Scholar
31Aines, R. D., Weed, H. C., and Bates, J. K., Mater. Res. Symp. Proc. 84, 547 (1987).Google Scholar
32Bates, J. K. and Gerding, T. J., Mater. Res. Symp. Proc. 112, 651 (1988).CrossRefGoogle Scholar
33Kingery, W. D. and Narasimhan, M. D., J. Appl. Phys. 30, 307 (1959).CrossRefGoogle Scholar
34Murray, P., Rodgers, E. P., and Williams, A. E., Trans. Brit. Ceram. Soc. 53, 474 (1954).Google Scholar
35Kondo, R., Lee, K., and Daimon, M., Yogyo-Kyokai-shi 84, 573 (1976).CrossRefGoogle Scholar
36McKewan, W.M., Trans. TMS-AIME, 212, 791 (1958); 218, 2 (1960).Google Scholar