Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T06:59:33.039Z Has data issue: false hasContentIssue false

Processing of silicon carbide ceramics using chemically modified polycarbosilanes

Published online by Cambridge University Press:  26 July 2012

Sachiko Okuzaki
Affiliation:
Fine Ceramics Research Association Synergy Ceramics Laboratory, 2-4-1 Mutsuno Atsuta-ku, Nagoya 456, Japan
Yuji Iwamoto
Affiliation:
Fine Ceramics Research Association Synergy Ceramics Laboratory, 2-4-1 Mutsuno Atsuta-ku, Nagoya 456, Japan
Shinji Kondoh
Affiliation:
Fine Ceramics Research Association Synergy Ceramics Laboratory, 2-4-1 Mutsuno Atsuta-ku, Nagoya 456, Japan
Koichi Kikuta
Affiliation:
National Industrial Research Institute of Nagoya, 1 Harate-cho, Kita-ku, Nagoya 462, Japan
Shin-ichi Hirano
Affiliation:
Department of Applied Chemistry, School of Engineering, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya 464-01, Japan
Get access

Extract

Chemically modified polycarbosilane (PC) which contains Si–Al–C–O component, PCOAl, was synthesized using PC and aluminum triisopropoxide. Ceramic yield was greatly improved through the modification of PC with a metal alkoxide. The phase transformation behavior and microstructure development of silicon carbide (SiC) were studied on β–SiC powders coated with chemically modified PC. The β-α phase transformation of SiC was enhanced by the coating of chemically modified PC on β–SiC powder. A unique microstructure with submicron-sized plate-like grains was developed, since the fine a phase produced at low temperature served as a nucleation site for the β-α phase transformation of SiC.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Allegro, R. A., Confine, L. B., and Tinklepaugh, J. R., J. Am. Ceram. Soc. 39 (11), 386 (1956).CrossRefGoogle Scholar
2.Lange, F. F., J. Mater. Sci. 10, 314 (1975).Google Scholar
3.Bocker, W., Landfemann, H., and Hausner, H., Powder Metall. Int. 11 (2), 83 (1979).Google Scholar
4.Suzuki, K., Report Res. Lab. Asahi Glass Co., Ltd. 36 (1), 25 (1986).Google Scholar
5.Shinohara, N., Suzuki, K., and Kanno, T., Report Res. Lab. Asahi Glass Co., Ltd. 41 (1), 25 (1991).Google Scholar
6.van Dijen, F. K. and Mayer, E., J. Eur. Ceram. Soc. 16, 413 (1996).CrossRefGoogle Scholar
7.Omori, M. and Takei, H., J. Am. Ceram. Soc. 61, C92 (1982).Google Scholar
8.Kim, D.H. and Kim, C.H., J. Am. Ceram. Soc. 73, 1431 (1990).CrossRefGoogle Scholar
9.Nose, T. and Fujii, T., J. Am. Ceram. Soc. 71, 328 (1988).Google Scholar
10.Shinozaki, S. S., Hangas, J., Cardoner, K. R., Rokosz, M. J., Suzuki, K., and Shinohara, N., J. Mater. Res. 8, 1635 (1993).Google Scholar
11.Shinohara, N., Suzuki, K., and Kanno, T., Report Res. Lab. Asahi Glass Co., Ltd. 43 (1), 21 (1993).Google Scholar
12.Kodama, H. and Miyoshi, T., J. Am. Ceram. Soc. 73, 3081 (1990).CrossRefGoogle Scholar
13.Yajima, S., Hayashi, J., and Omori, M., Chem. Lett., 931 (1975).Google Scholar
14.Yajima, S., Hayashi, J., Omori, M., and Oakamura, K., Nature (London) 261, 683 (1976).Google Scholar
15.Kim, Y. M. and Lee, J. G., J. Mater. Sci. 27, 4746 (1992).Google Scholar
16.Babonneau, F., Sararu, G. D., Thirne, K. J., and Mackenzie, D., J. Am. Ceram. Soc. 74 (7), 1725 (1991).Google Scholar
17.Nogami, M. and Moriya, Y., Yogyo-Kyokai-Shi 85 (2), 59 (1997).Google Scholar
18.Delverdie, O., Monthioux, M., Mocaer, D., and Pailler, R., J. Eur. Ceram. Soc. 77 (2), 519 (1994).Google Scholar
19.Padture, N. P., J. Am. Ceram. Soc. 77 (2), 519 (1994).Google Scholar
20.Wang, L.M. and Wei, W.C., J. Ceram. Soc. 103 (5), 434 (1995).Google Scholar
21.Mitomo, M., Inomata, Y., and Kumanomido, M., Yogyo-Kyokai-Shi 78 (7), 18 (1970).Google Scholar