Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T21:08:43.490Z Has data issue: false hasContentIssue false

Probing local electrochemical activity within yttria-stabilized-zirconia via in situ high-temperature atomic force microscopy

Published online by Cambridge University Press:  20 October 2014

Jiaxin Zhu
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Engineering Lab I, Amherst, Massachusetts 01003, United States
Carlos R. Pérez
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
Tae-Sik Oh
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
Rainer Küngas
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
John M. Vohs
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
Dawn A. Bonnell
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
Stephen S. Nonnenmann*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Engineering Lab I, Amherst, Massachusetts 01003, United States
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Considerable interest in understanding interfacial phenomena occurring across nanostructured solid oxide fuel cell (SOFC) membrane electrode assemblies has increased demand for in situ characterization techniques with higher resolution. We briefly outline recent advancements in atomic force microscopy (AFM) instrumentation and subsystems in realizing real time imaging at high temperatures and ambient pressures, and the use of these in situ, multi-stimuli probes in collecting local information related to physical and fundamental processes. Here we demonstrate direct probing of local surface potential gradients related to the ionic conductivity of yttria-stabilized zirconia (YSZ) within symmetric SOFCs under intermediate operating temperatures (500–600 °C) via variable temperature scanning surface potential microscopy (VT-SSPM). The conductivity values obtained at different temperatures are then used to estimate the activation energy. These locally collected conductivity and activation energy values are subsequently compared to macroscopic electrochemical impedance results and bulk literature values, thus supporting the validity of the approach.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkinson, A., Barnett, S., Gorte, R.J., Irvine, J.T.S., McEvoy, A.J., Mogensen, M., Singhal, S.C., and Vohs, J.: Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17 (2004).Google Scholar
Park, S., Vohs, J.M., and Gorte, R.J.: Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265 (2000).Google Scholar
Shao, Z., Haile, S.M., Ahn, J., Ronney, P.D., Zhan, Z., and Barnett, S.A.: A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature 435, 795 (2005).Google Scholar
Han, D., Liu, X., Zeng, F., Qian, J., Wu, T., and Zhan, Z.: A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci. Rep. 2, 1 (2012).Google Scholar
Etsell, T.H. and Flengas, S.N.: Electrical properties of solid oxide electrolytes. Chem. Rev. 70, 339 (1970).Google Scholar
Goodenough, J.B.: Oxide-ion electrolytes. Annu. Rev. Mater. Res. 33, 91 (2003).Google Scholar
Ormerod, R.M.: Solid oxide fuel cells. Chem. Soc. Rev. 32, 17 (2002).Google Scholar
Fergus, J.W.: Electrolytes for solid oxide fuel cells. J. Power Sources 162, 30 (2006).CrossRefGoogle Scholar
Garcia-Barriocanal, J., Rivera-Calzada, A., Varela, M., Sefrioui, Z., Iborra, E., Leon, C., Pennycook, S.J., and Santamaria, J.: Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676 (2008).Google Scholar
Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., and Prinz, F.B.: High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154, 20 (2007).CrossRefGoogle Scholar
Li, M., Pietrowski, M.J., Souza, R.A.D., Zhang, H., Reaney, I.M., Cook, S.N., Kilner, J.A., and Sinclair, D.C.: A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31 (2014).Google Scholar
Wang, Z., Cheng, M., Bia, Z., Dong, Y., Zhang, H., Zhang, J., Feng, Z., and Li, C.: Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater. Lett. 59, 2579 (2005).CrossRefGoogle Scholar
Xia, C. and Liu, M.: Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing. Solid State Ionics 144, 249 (2001).Google Scholar
O'Hayre, R.P., Cha, S-W., Colella, W.G., and Prinz, F.B.: Fuel Cell Fundamentals, 2nd ed. (Wiley, New York, 2009).Google Scholar
Nielsen, J. and Hjelm, J.: Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM: YSZ cathodes. Electrochim. Acta 115, 31 (2014).Google Scholar
Zhang, C., Grass, M.E., McDaniel, A.H., DeCaluwe, S.C., Gabaly, F.E., Liu, Z., McCarty, K.F., Farrow, R.L., Linne, M.A., Hussain, Z., Jackson, G.S., Bluhm, H., and Eichhorn, B.W.: Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ x-ray photoelectron spectroscopy. Nat. Mater. 9, 944 (2010).Google Scholar
Kaya, S., Ogasawarab, H., Näslundb, L-Å., Forsellc, J-O., Casalongue, H.S., Miller, D.J., and Nilsson, A.: Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry. Catal. Today 205, 101 (2013).CrossRefGoogle Scholar
Kumar, A., Leonard, D., Jesse, S., Ciucci, F., Eliseev, E.A., Morozovska, A.N., Biegalski, M.D., Christen, H.M., Tselev, A., Mutoro, E., Crumlin, E.J., Morgan, D., Shao-Horn, Y., Borisevich, A., and Kalinin, S.V.: Spatially resolved mapping of oxygen reduction/evolution reaction on solid-oxide fuel cell cathodes with sub-10 nm resolution. ACS Nano 7, 3808 (2013).Google Scholar
Kumar, A., Jesse, S., Morozovska, A., Eliseev, E., Tebano, A., Yang, N., and Kalinin, S.V.: Variable temperature electrochemical strain microscopy of Sm-doped ceria. Nanotechnology 24, 145401 (2013).Google Scholar
Hou, J., Nonnenmann, S.S., Qin, W., and Bonnell, D.A.: A transition in mechanisms of size dependent electrical transport at nanoscale metal-oxide interfaces. Appl. Phys. Lett. 103, 252106 (2013).CrossRefGoogle Scholar
Cappella, B. and Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1 (1999).CrossRefGoogle Scholar
Zhu, J., Lu, L., and Zeng, K.: Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques. ACS Nano 7, 1666 (2013).Google Scholar
Saive, R., Scherer, M., Mueller, C., Daume, D., Schinke, J., Kroeger, M., and Kowalsky, W.: Imaging the electric potential within organic solar cells. Adv. Funct. Mater. 23, 5854 (2013).Google Scholar
Broekmaat, J., Brinkman, A., Blank, D.H.A., and Rijnders, G.: High temperature surface imaging using atomic force microscopy. Appl. Phys. Lett. 92, 043102 (2008).Google Scholar
Hansen, K.V., Wu, Y., Jacobsen, T., Mogensen, M.B., and Kuhn, L.T.: Improved controlled atmosphere high temperature scanning probe microscope. Rev. Sci. Instrum. 84, 073701 (2013).Google Scholar
Nonnenmann, S.S. and Bonnell, D.A.: Miniature environmental chamber enabling in situ scanning probe microscopy within reactive environments. Rev. Sci. Instrum. 84, 073707 (2013).CrossRefGoogle ScholarPubMed
Nonnenmann, S.S., Kungas, R., Vohs, J., and Bonnell, D.A.: Direct in situ probe of electrochemical processes in operating fuel cells. ACS Nano 7, 6330 (2013).CrossRefGoogle ScholarPubMed
Yeh, T-H., Hsu, W-C., and Chou, C-C.: Mechanical and electrical properties of ZrO2 (3Y) doped with RENbO4 (RE = Yb, Er, Y, Dy, YNd, Sm, Nd). J. Phys. IV France 128, 213 (2005).Google Scholar
Han, M., Tang, X., Yin, H., and Peng, S.: Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 165, 757 (2007).Google Scholar
Vohs, J.M. and Gorte, R.J.: High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943 (2009).Google Scholar
Küngas, R., Vohs, J.M., and Gorte, R.J.: Systematic studies of the cathode-electrolyte interface in SOFC cathodes prepared by infiltration. ECS Trans. 35, 2085 (2011).CrossRefGoogle Scholar
Huang, Y., Vohs, J.M., and Gorte, R.J.: Fabrication of Sr-doped LaFeO3 YSZ composite cathodes. J. Electrochem. Soc. 151, A646 (2004).Google Scholar
Küngas, R., Vohs, J.M., and Gorte, R.J.: Effect of the ionic conductivity of the electrolyte in composite SOFC cathodes. J. Electrochem. Soc. 158, B743 (2011).Google Scholar
Küngas, R., Yu, A.S., Levine, J., Vohs, J.M., and Gorte, R.J.: An investigation of oxygen reduction kinetics in LSF electrodes. J. Electrochem. Soc. 160, F205 (2013).Google Scholar
Bessler, W.G., Gewies, S., and Vogler, M.: A new framework for physically based modeling of solid oxide fuel cells. Electrochim. Acta 53, 1782 (2006).Google Scholar
Hui, S.R., Roller, J., Yick, S., Zhang, X., Decès-Petit, C., Xie, Y., Maric, R., and Ghosh, D.: A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J. Electrochem. Soc. 172, 493 (2007).Google Scholar
Pornprasertsuk, R., Ramanarayanan, P., Musgrave, C.B., and Prinz, F.B.: Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys. 98, 103513 (2005).Google Scholar