Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T15:51:00.427Z Has data issue: false hasContentIssue false

Pressure Distribution During Binder Burnout in Three-dimensional Porous Ceramic Bodies with Anisotropic Permeability

Published online by Cambridge University Press:  31 January 2011

Stephen J. Lombardo
Affiliation:
Department of Chemical Engineering, University of Missouri—Columbia, Columbia, 65211
Z. C. Feng
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Missouri—Columbia, Columbia, 65211
Get access

Abstract

The flow of gas-phase products in three-dimensional porous bodies was modeled for the case when a source term is present. Analytical solutions to the governing partial differential equations were obtained for bodies of parallelepiped and cylindrical geometry. An important feature of the model is that it treats the case where the permeability in the body may be anisotropic. The evolution of pressure within the body depends on a number of parameters, including the rate of production of gas-phase species, and on the dimensions of the body. The model is thus able to describe the pressure within a porous ceramic body arising from flow during a number of elevated-temperature processing operations such as drying, binder burnout, and sintering.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lewis, J.A., Annu. Rev. Mater. Sci. 27, 147 (1997).CrossRefGoogle Scholar
2.Liau, L.C-K., Peters, B., Krueger, D.S., Gordon, A., Viswanath, D.S., and Lombardo, S.J., J. Am. Ceram. Soc. 83, 2645 (2000).CrossRefGoogle Scholar
3.Spronson, D.W. and Messing, G.L., in Ceramic Powder Science IIa, edited by Messing, G.L., Fuller, E., and Hausner, H. (Ceram. Trans. 1, Am. Ceram. Soc., Westerville, OH, 1988), p. 528.Google Scholar
4.Barone, M.R. and Ulicny, J.C., J. Am. Ceram. Soc. 73, 3323 (1990).CrossRefGoogle Scholar
5.Lewis, J.A. and Cima, M.J., J. Am. Ceram. Soc. 73, 2702 (1990).CrossRefGoogle Scholar
6.Calvert, P. and Cima, M., J. Am. Ceram. Soc. 73, 575 (1989).CrossRefGoogle Scholar
7.Cima, M.J., Lewis, J.A., and Devoe, A.D., J. Am. Ceram. Soc. 72, 1192 (1989).CrossRefGoogle Scholar
8.Evans, J.R.G., Edirisinghe, M.J., Wright, J.K., and Crank, J., R. Soc. London A 432, 321 (1991).Google Scholar
9.Matar, S.A., Edirisinghe, M.J., Evans, J.R.G., and Twizell, E.H., J. Mater. Res. 8, 617 (1993).CrossRefGoogle Scholar
10.Matar, S.A., Edirisinghe, M.J., Evans, J.R.G., Twizell, E.H., and Song, J.H., J. Mater. Sci. 30, 3805 (1995).CrossRefGoogle Scholar
11.Song, J.H., Edirisinghe, M.J., Evans, J.R.G., and Twizell, E.H., J. Mater. Res. 11, 830 (1996).CrossRefGoogle Scholar
12.Matar, S.A., Edirisinghe, M.J., Evans, J.R.G., and Twizell, E.H., J. Am. Ceram. Soc. 79, 749 (1996).CrossRefGoogle Scholar
13.German, R.M., Int. J. Powder Metall. 23, 237 (1987).Google Scholar
14.Lograsso, B.K. and German, R.M., Powder Metall. Int. 22, 17 (1990).Google Scholar
15.Stangle, G.Y. and Aksay, I.A., Chem. Eng. Sci. 45, 1719 (1990).Google Scholar
16.Tsai, D-S., AIChE J. 37, 547 (1991).CrossRefGoogle Scholar
17.Manguin-Fritsch, A., Burlet, H., Fourt, P.M., and Abouaf, M., L’Industrie Ce´ramique & Verrière 887, 744 (1992).Google Scholar
18.West, A.C. and Lombardo, S.J., Chem. Eng. J. 71, 243 (1998).Google Scholar
19.Shende, R.V. and Lombardo, S.J., J. Amer. Ceram. Soc. 85, 780 (2002).CrossRefGoogle Scholar
20.Shivashankar, T.S. and German, R.M., J. Am. Ceram. Soc. 82, 1146 (1990).CrossRefGoogle Scholar
21.Peters, B. and Lombardo, S.J., J. Mater. Sci.: Mater. Electron. 12, 403 (2001).Google Scholar
22.Shende, R.V., Krueger, D.S., and Lombardo, S.J., J. Mater. Sci.: Mater Electron. 12, 637 (2001).Google Scholar
23.Harr, M.E., Mechanics of Particulate Media (McGraw-Hill, New York, 1997).Google Scholar
24.Coussy, O., Mechanics of Porous Continua (John Wiley & Sons, New York, 1995).Google Scholar
25.Feng, Z.C., He, B., and Lombardo, S.J., J. Applied Mech. 69, 1 (2002).CrossRefGoogle Scholar
26.Muscat, M., Flow of Homogeneous Fluids (McGraw-Hill, New York, 1937).Google Scholar
27.Scheidegger, A.E., The Physics of Flow Through Porous Media (University of Toronto Press, Toronto, 1974).Google Scholar
28.Modeling and Applications of Transport Phenomena in Porous Media, edited by Bear, J. and Buchlin, J-M. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991).CrossRefGoogle Scholar
29.Weinberger, H.F., A First Course in Partial Differential Equations (Wiley, New York, 1965).Google Scholar