Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T01:36:22.825Z Has data issue: false hasContentIssue false

Preparation of YBa2Cu3O7−x superconducting films through the sol-gel method using metal alkoxides as starting materials

Published online by Cambridge University Press:  31 January 2011

Yoshio Masuda
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel, Ltd., 1-5-5, Takatsukadai Nishi-ku, Kobe 651-22, Japan
Rikuro Ogawa
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel, Ltd., 1-5-5, Takatsukadai Nishi-ku, Kobe 651-22, Japan
Yoshio Kawate
Affiliation:
Superconducting and Cryogenic Technology Center, Kobe Steel, Ltd., 1-5-5, Takatsukadai Nishi-ku, Kobe 651-22, Japan
Kazuo Matsubara
Affiliation:
Kobelco-Institute, Inc., 1-3-3, Wakinohama Chuo-ku, Kobe 651, Japan
Tuyoshi Tateishi
Affiliation:
Kobelco-Institute, Inc., 1-3-3, Wakinohama Chuo-ku, Kobe 651, Japan
Sumio Sakka
Affiliation:
Institute for Chemical Research, Kyoto University, Gokasho, Uji-shi, Kyoto 611, Japan
Get access

Abstract

YBa2Cu3O7−x superconducting films have been prepared on a YSZ ceramic substrate through the sol-gel method using metal alkoxides of Y, Ba, and Cu. A homogeneous solution containing the three metal alkoxides was prepared by dissolving the copper alkoxide, which is otherwise insoluble, in diaminoalcohol. The gel film, formed by dipping the substrate into the sol of 80 °C and withdrawing it up, was converted to a ceramic film consisting of YBa2Cu3O7−x phase by sintering at 850 °C for 30 min. The resulting film of about 10 μm in thickness showed zero resistivity (Tc end) at 54 K. Cold isostatic pressing of the film before sintering remarkably improved the Tc end to 85 K.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Asano, H., Tanabe, K., Katoh, Y., Kubo, S., and Michikami, O., Jpn. J. Appl. Phys. 26, L1221 (1987).CrossRefGoogle Scholar
2Hirai, T., Yamane, H., Kurosawa, H., Taruhara, A., Watanabe, K., Iwasaki, H., Kobayashi, N., and Muto, Y., Proc. Symp. in Nippon kinzokugakkai Fall Meeting, SI 14 (1987).Google Scholar
3Nasu, H., Katoh, T., Makida, S., Imura, T., and Osaka, Y., Jpn. J. Appl. Phys. 27, L2317 (1988).CrossRefGoogle Scholar
4Umeda, T., Kozuka, H., and Sakka, S., Adv. Ceram. Mater. 3, 520 (1988).CrossRefGoogle Scholar
5Kumagai, T., Kondo, W., Yokotu, H., Minamiue, H., and Mizuta, S.Chem. Lett. 551 (1988).Google Scholar
6Laine, R.M., Youngdahl, K.A., Kennish, R.A., Hoppe, M.L., Zhang, Z., and Ray, J., J. Mater. Res. 6, 895 (1991).CrossRefGoogle Scholar
7Masuda, Y. and Tateishi, T., J. Jpn. Soc. Powd. and Powd. Metal. 35, 865 (1988).CrossRefGoogle Scholar
8Masuda, Y., Tateishi, T., Matubara, K., Ogawa, R., and Kawate, Y., Jpn. J. Appl. Phys. 30, 1390 (1991)CrossRefGoogle Scholar
9Oda, M., Murakami, T., Enomoto, Y., and Suzuki, M., Jpn. J. Appl Phys. 26, L804 (1987)CrossRefGoogle Scholar
10Manabe, T., Kumagai, T., Minamiue, H., Nakamura, S., and Mizuta, S, J. Ceram. Soc. Jpn. 98, 77 (1990)CrossRefGoogle Scholar
11Chen, J. M., Zheng, Y., Chen, G. L., Ren, C. X., Yang, J., Xie, L. M. and Zou, S. C., Appl. Phys. A48 277 (1989)CrossRefGoogle Scholar