Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T05:53:59.333Z Has data issue: false hasContentIssue false

Preparation and characterization of uniform submicrometer metal niobate particles. I. Lead niobate

Published online by Cambridge University Press:  31 January 2011

Myung Jin Kim
Affiliation:
Departments of Chemistry and Chemical Engineering, Clarkson University, Potsdam, New York 13699
Egon Matijević
Affiliation:
Departments of Chemistry and Chemical Engineering, Clarkson University, Potsdam, New York 13699
Get access

Abstract

Colloidal amorphous lead niobate particles of different composition and morphologies were obtained by a metal-chelate decomposition method. The nature of the dispersions depended on the conditions of the preparation of the complexes, pH, aging time, and temperature. The structural and chemical changes of the so prepared powders on calcination were investigated by thermal and x-ray diffraction analyses. Chemical mechanisms of the formation and transformation of the particles are suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Abouelleil, M. M. and Leonberger, F. J., J. Am. Ceram. Soc. 72 1311 (1989).CrossRefGoogle Scholar
2Shrout, T. R. and Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987).Google Scholar
3Mazdiyasni, K. S., Am. Ceram. Soc. Bull. 63, 591 (1984).Google Scholar
4Feng, C. and Schulze, W. A., Adv. Ceram. Mater. 3, 468 (1988).CrossRefGoogle Scholar
5Chaput, F., Boilot, J. P., Lejeune, M., Papiernik, R., and Hubert-Pflazgraf, L.G, J. Am. Ceram. Soc. 72, 1335 (1989).CrossRefGoogle Scholar
6Kassarjian, M. P., Newnham, R. E., and Biggers, J. V., J. Am. Ceram. Soc. Bull. 64, 1108 (1985).Google Scholar
7Dambekalne, M., Sternberg, A., Brante, I., Antonova, M., and Kapenieks, A., Ferroelectrics 69, 21 (1986).Google Scholar
8Roth, R. S., J. Res. Nat. Bur. Stand. 62, 27 (1959).CrossRefGoogle Scholar
9Gherardi, P. and Matijevic, E., Colloids Surf. 32, 257 (1988).Google Scholar
10Kim, M. and Matijevic, E., Chem. Materials 1, 363 (1989).CrossRefGoogle Scholar
11Sandell, E. B., Colorimetric Determination of Traces of Metals, 3rd ed. (Interscience Publishers, Inc., New York, 1959).Google Scholar
12Thomas, J. C., J. Colloid Interface Sci. 117, 187 (1987).CrossRefGoogle Scholar
13 Powder Diffraction File, JCPDS International Centre for Diffractio Data, Swarthmore, PA (1981).Google Scholar
14Weast, R. C., CRC Handbook of Chemistry and Physics, 62nd ed. (CRC Press Inc., Cleveland, OH, 1981).Google Scholar
15Gregg, S. J. and Sing, K. S. W., Adsorption, Surface Area, and Porosity (Academic Press Inc., London, 1967).CrossRefGoogle Scholar
16Alquier, C., Vandenborre, M. T., and Henry, M., J. Non-Cryst Solids 79, 383 (1986).CrossRefGoogle Scholar
17Babko, A. K., Nabivanets, B. I., and Lukianets, I. G., Russ. J. Inorg. Chem. 11, 671 (1966).Google Scholar
18Chaberek, S. and Martell, A. E., Organic Sequestering Agents (John Wiley & Sons, Inc., New York, 1959).Google Scholar
19Baes, C. F. Jr and Mesmer, R. E., The Hydrolysis of Cations (John Wiley & Sons, Inc., New York, 1976).Google Scholar
20Fairbrother, F., The Chemistry of Niobium and Tantalum (Elsevier Publishing Co., Amsterdam, 1967).Google Scholar
21Lejeune, M. and Boilot, J. P., Am. Ceram. Soc. Bull. 64, 679 (1985).Google Scholar