Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T16:07:38.076Z Has data issue: false hasContentIssue false

Preferred Orientation of Copper Phthalocyanine Thin Films Evaporated on Amorphous Substrates

Published online by Cambridge University Press:  31 January 2011

R. Resel*
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
M. Ottmar
Affiliation:
Institut für Organische Chemie, Universität Tübingen, Tübingen, Germany
M. Hanack
Affiliation:
Institut für Organische Chemie, Universität Tübingen, Tübingen, Germany
J. Keckes
Affiliation:
Erich-Schmid-Institut für Materialwissenschaften, Österreichische Akademie der Wissenschaften and Institut für Metallphysik, Montanuniversität Leoben, Austria
G. Leising
Affiliation:
Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A series of copper phthalocyanine thin films were prepared on amorphous substrates using physical vapor deposition at ambient temperature. Different sample preparation conditions were used: the deposition rate was varied, and the substrates was static or rotating. The preferred orientation in the thin film was studied as a function of the deposition conditions. X-ray diffraction analysis was performed using θ/2θ and pole figure measurements. In the case of layers prepared at low deposition rates and using nonrotating substrates, a very strong fiber texture was detected with (100) crystallographic planes oriented preferably parallel to the substrate surface. At higher deposition rates, an additional second type of preferred orientation was observed with (110) planes oriented preferably parallel to the substrate surface. In the case of layers prepared with rotational substrates, the (110) type of preferred orientation was quantitatively more strongly developed. If we consider electronic band structure calculations, these results imply that the electron/hole transport through the thin films is enhanced for films prepared at high deposition rates and rotating substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Simon, J. and André, J-J., Molecular Semiconductors (SpringerVerlag, Berlin, Germany, 1985), p. 73.CrossRefGoogle Scholar
2.Phthalocyanines, edited by C.C. Leznoff and A.B.P. Lever (VCH Publishers, Weinheim, Germany, 19891996), Vols. 1–4.Google Scholar
3.Haisch, P., Winter, G., Hanack, M., Lüer, L., Egelhaaf, H-J., and Oelkrug, D., Adv. Mater. 9, 316 (1997).CrossRefGoogle Scholar
4.Gu, D., Chen, Q., Tang, X., Gan, F., Shen, S., Liu, K., and Xu, H., Opt. Commun. 121, 125 (1995).CrossRefGoogle Scholar
5.Kudo, K., Sumimoto, T., Hiraga, K., Kuniyoshi, S., and Tanaka, K., Jpn. J. Appl. Phys. 36, 6994 (1997).CrossRefGoogle Scholar
6.Rella, R., Serra, A., Siciliano, P., Tepore, A., Valli, L., and Zocco, A., Langmuir 13, 6562 (1997).CrossRefGoogle Scholar
7.Wöhrle, D., Kreienhoop, L., and Schlettwein, D., in Phthalocy-anines, edited by Leznoff, C.C. and Lever, A.B.P. (VCH Publishers, Weinheim, Germany, 1996), Vol. 4, p. 219.Google Scholar
8.Van Slyke, S.A., Chen, C.H., and Tang, C.W., Appl. Phys. Lett. 69, 2160 (1996).CrossRefGoogle Scholar
9.Parthasarathy, G., Burrows, P.E., Khalfin, V., Kozlov, V.G., and Forrest, S.R., Appl. Phys. Lett. 72, 2138 (1998).CrossRefGoogle Scholar
10.Ashida, M., Bull. Chem. Soc. Jpn. 39, 2625 (1966).CrossRefGoogle Scholar
11.Buchholz, J.C. and Somorjai, G.A., J. Chem. Phys. 66, 573 (1977).CrossRefGoogle Scholar
12.Mizutani, W., Shigeno, M., Sakakibara, Y., Kajimura, K., Ono, M., Tanishima, S., Ohno, K., and Toshima, N., J. Vac. Sci. Technol. A 8, 675 (1990).CrossRefGoogle Scholar
13.Forrest, S.R., Burrows, P.E., Haskal, E.I., and So, F.F., Phys. Rev. B 49, 11309 (1994).Google Scholar
14.England, C.D., Collins, G.E., Schuerlein, T.J., and Armstrong, N.R., Langmuir 10, 2748 (1994).CrossRefGoogle Scholar
15.Hayashi, K., Kawato, S., Fuji, Y., Horiuchi, T., and Matsushige, K., Mol. Cryst. Liq. Cryst. 294, 103 (1997).CrossRefGoogle Scholar
16.Watanabe, M., Sano, K., Inoue, M., Takagi, T., Nakao, T., Yokota, K., and Takada, J.. Appl. Surf. Sci. 130–132, 663 (1998).CrossRefGoogle Scholar
17.Ina, E., Matsumoto, N., Shikada, E., and Kannari, F., Appl. Surf. Sci. 127–129, 574 (1998).CrossRefGoogle Scholar
18.Vincett, P.S., Popovic, Z.D., and McIntyre, L., Thin Solid Films 82, 357 (1981).CrossRefGoogle Scholar
19.Komiyama, M., Sakakibara, Y., and Hirai, H., Thin Solid Films 151, L109 (1987).CrossRefGoogle Scholar
20.Tanishima, S., Ohno, K., Sakakibara, Y., and Toshima, N., Chem. Exp. 5, 153 (1990).Google Scholar
21.Debe, M.K., Poirier, R.J., and Kam, K.K., Thin Solid Films 197, 335 (1991).CrossRefGoogle Scholar
22.Silinsh, E.A., and Capek, V., Organic Molecular Crystals (AIP Press, New York, 1994), p. 15.Google Scholar
23.Erk, P., in Proc. 17th Eur. Cryst. Meeting, 24–28 Aug 1997, Lisbon, Portugal.Google Scholar
24.Brown, C.J., J. Chem. Soc. A 2488 (1968).CrossRefGoogle Scholar
25.Iwatsu, F., J. Phys. Chem. 92, 1678 (1988).CrossRefGoogle Scholar
26.Yanagi, H. and Okamoto, S., Appl. Phys. Lett. 71, 2563 (1997).CrossRefGoogle Scholar
27.Resel, R., Koch, N., Meghdadi, F., Leising, G., Unzog, W., and Reichmann, K., Thin Solid Films 305, 232 (1997).CrossRefGoogle Scholar
28.Niko, A., Meghdadi, F., Ambrosch-Draxl, C., Vogl, P., and Leising, G., Synth. Met. 76, 177 (1996).CrossRefGoogle Scholar
29.Reichmann, K., Koch, N., Resel, R., Meghdadi, F., and Leising, G., Proc. MIDEM 97, 249 (1997).Google Scholar
30.Resel, R., Graupner, W., Hochfilzer, C., Koch, N., Meghdadi, F., Tasch, S., Wohlgenannt, M., Leising, G., and Reichmann, K., in Proc. XVII. Int. Conf. Appl. Crystallogr. (World Scientific, Singapore, 1998), p. 413.Google Scholar
31.Hu, W.P., Liu, Y.Q., Zhu, S.Q., Tao, J., Xu, D.F., and Zhu, D.B., Thin Solid Films 347, 299 (1999).CrossRefGoogle Scholar
32.Nagasawa, T., Murakami, K., and Watanabe, K., Denki-Kagaku 66, 1034 (1998).CrossRefGoogle Scholar
33.Pulker, H.K., in Coatings on Glass, Thin Films and Technology 6, edited by Siddall, G. (Elsevier Science, New York, 1984).Google Scholar
34.Kraus, W. and Nolze, G., J. Appl. Crystallogr. 29, 301 (1996).CrossRefGoogle Scholar
35.Weber, S., J. Appl. Crystallogr. 29, 306 (1996).CrossRefGoogle Scholar
36.Brown, C.J., J. Chem. Soc. A 2494 (1968).CrossRefGoogle Scholar
37.Forrest, S.R., Kaplan, M.L., and Schmid, P.H., J. Appl. Phys. 56, 543 (1984).CrossRefGoogle Scholar
38.Brandt, H-J., Resel, R., Keckes, J., Koppelhuber-Bitschnau, B., Koch, N., and Leising, G., in Organic Nonlinear Optical Materials and Devices, edited by Kippelen, B., Lackritz, H.S., and Claus, R.O. (Mater. Res. Soc. Symp. Proc. 561, Warrendale, PA, 1999), p. 161.Google Scholar
39.Ambily, S. and Menon, C.S., Ind. J. Pure Appl. Phys. 34, 933 (1996).Google Scholar
40.Chen, I., J. Chem. Phys. 51, 3241 (1969).CrossRefGoogle Scholar
41.Guo, L., Ellis, D.E., Mundim, K.C., and Hoffman, B.M., J. Porphyrins Phthalocyanines 3, 196 (1999).3.0.CO;2-C>CrossRefGoogle Scholar