Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T00:27:34.261Z Has data issue: false hasContentIssue false

Powder metallurgy of Al0.1CoCrFeNi high-entropy alloy

Published online by Cambridge University Press:  05 October 2020

Rathinavelu Sokkalingam
Affiliation:
Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli620015, Tamil Nadu, India
Marek Tarraste
Affiliation:
Department of Mechanical and Industrial Engineering, Tallinn University of Technology, 19086 Tallinn, Estonia
Kumar Babu Surreddi
Affiliation:
Materials Technology, Dalarna University, SE-791 88Falun, Sweden
Valdek Mikli
Affiliation:
Department of Materials and Environmental Technology, Tallinn University of Technology, 19086 Tallinn, Estonia
Veerappan Muthupandi
Affiliation:
Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli620015, Tamil Nadu, India
Katakam Sivaprasad*
Affiliation:
Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli620015, Tamil Nadu, India
Konda Gokuldoss Prashanth*
Affiliation:
Department of Mechanical and Industrial Engineering, Tallinn University of Technology, 19086 Tallinn, Estonia Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, LeobenA-8700, Austria CBCMT, School of Mechanical Engineering, Vellore Institute of Technology, Vellore632014, India
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Al0.1CoCrFeNi high-entropy alloy (HEA) was synthesized successfully from elemental powders by mechanical alloying (MA) and subsequent consolidation by spark plasma sintering (SPS). The alloying behavior, microstructure, and mechanical properties of the HEA were assessed using X-ray diffraction, electron microscope, hardness, and compression tests. MA of the elemental powders for 8 h has resulted in a two-phased microstructure: α-fcc and β-bcc phases. On the other hand, the consolidated bulk Al0.1CoCrFeNi-HEA sample reveals the presence of α-fcc and Cr23C6 phases. The metastable β-bcc transforms into a stable α-fcc during the SPS process due to the supply of thermal energy. The hardness of the consolidated bulk HEA samples is found to be 370 ± 50 HV0.5, and the yield and ultimate compressive strengths are found to be 1420 and 1600 MPa, respectively. Such high strength in the Al0.1CoCrFeNi HEA is attributed to the grain refinement strengthening.

Type
Invited Feature Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of Materials Research Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

George, E.P., Raabe, D., and Ritchie, R.O.: High-entropy alloys. Nat. Rev. Mater. 4, 515 (2019).CrossRefGoogle Scholar
George, E.P., Curtin, W.A., and Tasan, C.C.: High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 188, 435 (2020).CrossRefGoogle Scholar
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Miracle, D.B., Miller, J.D., Senkov, O.N., Woodward, C., Uchic, M.D., and Tiley, J.: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).CrossRefGoogle Scholar
Sokkalingam, R., Sivaprasad, K., Duraiselvam, M., Muthupandi, V., and Prashanth, K.G.: Novel welding of Al0.5CoCrFeNi high-entropy alloy: Corrosion behavior. J. Alloys Compd. 817, 153163 (2020).Google Scholar
Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).Google Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213 (2004).Google Scholar
Sajithbabu, C., Sivaprasad, K., Muthupandi, V., and Szpunar, J.A.: Characterization of nanocrystalline AlCoCrCuNiFeZn high entropy alloy produced by mechanical alloying. Procedia Mater. Sci. 5, 1020 (2014).Google Scholar
Gangireddy, S., Gwalani, B., Soni, V., Banerjee, R., and Mishra, R.S.: Contrasting mechanical behavior in precipitation hardenable AlxCoCrFeNi high entropy alloy microstructures: Single phase FCC vs. dual phase FCC-BCC. Mater. Sci. Eng. A 739, 158 (2019).CrossRefGoogle Scholar
Kumar, N., Yinh, Q., Nie, X., Mishra, R.S., Tang, Z., Liaw, P.K., Brennan, R.E., Dohetry, K.J., and Cho, K.C.: High strain-rate compressive deformation behavior of Al0.1CrFeCoNi high entropy alloy. Mater. Des. 86, 598 (2015).Google Scholar
Gangireddy, S., Gwalani, B., Liu, K., Banerjee, R., and Mishra, R.S.: Microstructures with extraordinary dynamic work hardening and strain rate sensitivity in Al0.3CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 734, 42 (2018).CrossRefGoogle Scholar
Gangireddy, S., Kaimiao, L., Gwalani, B., and Mishra, R.S.: Microstructural dependence of strain rate sensitivity in thermomechanically processed Al0.1CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 727, 148 (2018).CrossRefGoogle Scholar
Wang, W.R., Wang, W.L., and Yeh, J.W.: Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143 (2014).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Tong, C.J., Chen, M.R., Yeh, J.W., Lin, S.J., Chen, S.K., Shun, T.T., and Chang, S.Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).CrossRefGoogle Scholar
Sokkalingam, R., Mishra, S., Cheethirala, S.R., Muthupandi, V., and Sivaprasad, K.: Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 48, 3630 (2017).CrossRefGoogle Scholar
Li, D.Y. and Zhang, Y.: The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 70, 24 (2016).CrossRefGoogle Scholar
Sun, Y., Chen, P., Liu, L., Yan, M., Wu, X., Yu, C., and Liu, Z.: Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation. Intermetallics 93, 85 (2018).CrossRefGoogle Scholar
Sokkalingam, R., Muthupandi, V., Sivaprasad, K., and Prashanth, K.G.: Dissimilar welding of Al0.1CoCrFeNi high-entropy alloy and AISI304 stainless steel. J. Mater. Res. 34, 2683 (2019).CrossRefGoogle Scholar
Lv, Y., Hu, R., Yao, Z., Chen, J., Xu, D., Liu, Y., and Fan, X.: Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys. Mater. Des. 132, 292 (2017).CrossRefGoogle Scholar
Karimi, J., Ma, P., Jia, Y.D., and Prashanth, K.G.: Linear patterning of high entropy alloy by additive manufacturing. Manuf. Lett. 24, 9 (2020).Google Scholar
Shi, Y., Collins, L., Feng, R., Zhang, C., Balke, N., Liaw, P.K., and Yang, B.: Homogenization of AlxCoCrFeNi high-entropy alloys with improved corrosion resistance. Corr. Sci. 133, 120 (2018).Google Scholar
Sokkalingam, R., Sivaprasad, K., Duraiselvam, M., Muthupandi, V., and Prashanth, K.G.: Novel welding of Al0.5CoCrFeNi high-entropy alloy: Corrosion behavior. J. Alloys Compd. 817, 153163 (2020).CrossRefGoogle Scholar
Joseph, J., Haghdadi, N., Shamlaye, K., Hodgson, P., Barnett, M., and Fabijanic, D.: The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures. Wear 428–429, 32 (2019).CrossRefGoogle Scholar
Kumar, N., Komarasamy, M., Nelaturu, P., Tang, Z., Liaw, P.K., and Mishra, R.S.: Friction stir processing of a high entropy alloy Al0.1CoCrFeNi. JOM 67, 1007 (2015).CrossRefGoogle Scholar
Sokkalingam, R., Mastanaiah, P., Muthupandi, V., Sivaprasad, K., and Prashanth, K.G.: Electron beam welding of high entropy alloy and stainless steel: Microstructure and mechanical properties. Mater. Manuf. Process. (2020). doi: 10.1080/10426914.2020.1802045CrossRefGoogle Scholar
Xia, S.Q., Yang, X., Yang, T.F., Liu, S., and Zhang, Y.: Irradiation resistance in AlxCoCrFeNi high entropy alloys. JOM 67, 2340 (2015).CrossRefGoogle Scholar
Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Fang, Y., Zhang, Y., Xue, J., Yan, S., and Wang, Y.: Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation. Sci. Rep. 6, 32146 (2016).CrossRefGoogle ScholarPubMed
Nair, R.B., Arora, H.S., Mukherjee, S., Singh, S., Singh, H., and Grewal, H.S.: Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. Ultrason. Sonochem. 41, 252 (2018).CrossRefGoogle ScholarPubMed
Li, R., Hou, J., Yang, W., Yu, H., Wang, Q., and Zhang, Z.: Strengthening mechanism and yield strength prediction of cold-drawn commercially pure aluminum wire. IOP Conf. Ser. Mater. Sci. Eng. 382, 022094 (2018).CrossRefGoogle Scholar
Wu, S.W., Wang, G., Yi, J., Jia, Y.D., Hussain, I., Zhai, Q.J., and Liaw, P.K.: Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy. Mater. Res. Lett. 5, 276 (2017).CrossRefGoogle Scholar
Fu, Z., Chen, W., Wen, H., Zhang, D., Chen, Z., Zheng, B., Zhou, Y., and Lavernia, E.J.: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).CrossRefGoogle Scholar
Wang, Z., Qu, R.T., Scudino, S., Sun, B.A., Prashanth, K.G., Louzguine-Luzgin, D.V., Chen, M.W., Zhang, Z.F., and Eckert, J.: Hybrid nanostructured aluminum alloy with super-high strength. NPG Asia Mater. 7, e229 (2015).CrossRefGoogle Scholar
Maity, T., Prashanth, K.G., Balci, O., Kim, J.T., Schoeberl, T., Wang, Z., and Eckert, J.: Influence of severe straining and strain rate on the evolution of dislocation structures during micro-/nanoindentatoin in high entropy lamellar eutectics. Int. J. Plasticity 109, 121 (2018).CrossRefGoogle Scholar
Prashanth, K.G., Scudino, S., Klauss, H.J., Surreddi, K.B., Loeber, L., Wang, Z., Chaubey, A.K., Kuehn, U., and Eckert, J.: Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater. Sci. Eng. A 590, 153 (2014).CrossRefGoogle Scholar
Xu, X.D., Liu, P., Hirata, A., Song, S.X., Nieh, T.G., and Chen, M.W.: Microstructural origins for a strong and ductile Al0.1CoCrFeNi high-entropy alloy with ultrafine grains. Materialia 4, 395 (2018).CrossRefGoogle Scholar
Wang, Z., Tan, J., Scudino, S., Sun, B.A., Qu, R.T., He, J., Prashanth, K.G., Zhang, W.W., Li, Y.Y., and Eckert, J.: Mechanical behavior of Al-based matrix composites reinforced with Mg58Cu28.5Gd11Ag2.5 metallic glass. Adv. Powder Technol. 25, 635 (2014).CrossRefGoogle Scholar
Wang, Z., Prashanth, K.G., Scudino, S., Chaubey, A.K., Sordelet, D.J., Zhang, W.W., Li, Y.Y., and Eckert, J.: Tensile properties of Al matrix composites reinforced with in situ devitrified Al84Gd6Ni7Co3 glassy particles. J. Alloys Compd. 586, S419 (2014).CrossRefGoogle Scholar
Ali, F., Scudino, S., Liu, G., Srivastava, V.C., Mukhopadhyay, N.K., Samadi Khoshkhoo, M., Prashanth, K.G., Uhlenwinkel, V., Calin, M., and Eckert, J.: Modeling the strengthening effect of Al–Cu–Fe quasicrystalline particles in Al-based metal matrix composites. J. Alloys Compd. 536S, S130 (2012).Google Scholar
Prashanth, K.G., Scudino, S., Chaubey, A.K., Loeber, L., Wang, P., Attar, H., Schimansky, F.P., Pyczak, F., and Eckert, J.: Processing of Al-12Si-TNM composites by selective laser melting and evaluation of compressive and wear properties. J. Mater. Res. 31, 55 (2016).CrossRefGoogle Scholar
Singh, N., Banerjee, S., Parkash, O., and Kumar, D.: Tribological and corrosion behavior of (100-x)(Fe70Ni30)-(x)ZrO2 composites synthesized by powder metallurgy. Mater. Chem. Phys. 205, 261 (2018).Google Scholar
Prashanth, K.G., Scudino, S., and Eckert, J.: Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater. 126, 25 (2017).CrossRefGoogle Scholar
Prashanth, K.G., Kolla, S., and Eckert, J.: Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials 10, 672 (2017).Google Scholar
Prashanth, K.G., Shakur Shahabi, H., Attar, H., Srivastava, V.C., Ellendt, N., Uhlenwinkel, V., Eckert, J., and Scudino, S.: Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Addit. Manuf. 6, 1 (2015).Google Scholar
Singh, N., Ummethala, R., Hameed, P., Sokkalingam, R., and Prashanth, K.G.: Competition between densification and microstructure of functional materials by selective laser melting. Mater. Des. Process. Comm. 2, e146 (2020).Google Scholar
Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).Google Scholar
Prashanth, K.G.: Influence of mechanical activation on decomposition of titanium hydride. Mater. Manuf. Process. 25, 974 (2010).CrossRefGoogle Scholar
Wang, Z., Prashanth, K.G., Scudino, S., He, J., Zhang, W.W., Li, Y.Y., Soica, M., Vaughan, G., Sordelet, D.J., and Eckert, J.: Effect of ball milling on structure and thermal stability of Al84Gd6Ni7Co3 glassy powders. Intermetallics 46, 97 (2014).CrossRefGoogle Scholar
Maity, T., Prashanth, K.G., Janda, A., Kim, J.T., Spieckermann, F., and Eckert, J.: Mechanism of high-pressure torsion-induced shear banding and lamellar thickness saturation in Co–Cr–Fe–Ni–Ng high-entropy composites. J. Mater. Res. 34, 2672 (2019).CrossRefGoogle Scholar
Maity, T., Prashanth, K.G., Balci, O., Wang, Z., Jia, Y.D., and Eckert, J.: Plastic deformation mechanisms in severely strained eutectic high entropy composites explained via strain rate sensitivity and activation volume. Comp. Part B 150, 7 (2018).CrossRefGoogle Scholar
Yu, P.F., Cheng, H., Zhang, L.J., Zhang, H., Jing, Q., Ma, M.Z., Liaw, P.K., Lia, G., and Liu, R.P.: Effects of high-pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 655, 283 (2016).CrossRefGoogle Scholar
Chaubey, A.K., Scudino, S., Prashanth, K.G., and Eckert, J.: Microstructure and mechanical properties of Mg–Al-based alloy modified with cerium. Mater. Sci. Eng. A 625, 46 (2015).CrossRefGoogle Scholar
Gutmanas, E.Y.: Materials with fine microstructure by advanced powder metallurgy. Prog. Mater. Sci. 34, 261 (1990).CrossRefGoogle Scholar
Marko, D., Prashanth, K.G., Scudino, S., Wang, Z., Ellendt, N., Uhlenwinkel, V., and Eckert, J.: Al-based metal matrix composites reinforced with Fe49.9Co35.1Nb7.7B4.5Si2.8 glassy powder: Mechanical behavior under tensile loading. J. Alloys Compd. 615, S382 (2014).CrossRefGoogle Scholar
Chaubey, A.K., Scudino, S., Khoshkhoo, M.S., Prashanth, K.G., Mukhopadhyay, N.K., Mishra, B.K., and Eckert, J.: High-strength ultrafine grain Mg–7.4%Al alloy synthesized by consolidation of mechanically alloyed powders. J. Alloys Compd. 610, 456 (2014).CrossRefGoogle Scholar
Molaiyan, P. and Witter, R.: Mechanochemical synthesis of solid-state electrolyte Sm1−xCaxF3−x for batteries and other electrochemical devices. Mater. Lett. 244, 22 (2019).CrossRefGoogle Scholar
Prashanth, K.G. and Murty, B.S.: Production, kinetic study and properties of Fe-based glass and its composites. Mater. Manuf. Process. 25, 592 (2010).CrossRefGoogle Scholar
Susila, P., Sturm, D., Heilmaier, M., Murty, B.S., and Sarma, V.S.: Effect of yttria particle size on the microstructure and compression creep properties of nanostructured oxide dispersion strengthened ferritic (Fe–12Cr–2W–0.5Y2O3) alloy. Mater. Sci. Eng. A 528, 4579 (2011).CrossRefGoogle Scholar
Prashanth, K.G., Scudino, S., Surreddi, K.B., Sakaliyska, M., Murty, B.S., and Eckert, J.: Crystallization kinetics of Zr65Ag5Cu12.5Ni10Al7.5 glassy powders produced by ball milling of pre-alloyed ingots. Mater. Sci. Eng. A 513, 279 (2009).CrossRefGoogle Scholar
Liu, X., Zhang, L., and Xu, Y.: Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS. Appl. Phys. A 123, 567 (2017).CrossRefGoogle Scholar
Molaiyan, P. and Witter, R.: Crystal phase and surface defect driven synthesis of Pb1−xSnxF2 solid solution electrolyte for fluoride ion batteries. J. Electroanal. Chem. 845, 154159 (2019).CrossRefGoogle Scholar
Satyanarayana, P.V., Sokkalingam, R., Jena, P.K., Sivaprasad, K., and Prashanth, K.G.: Tungsten matrix composite reinforced with CoCrFeMnNi high-entropy alloy: Impact of processing routes on microstructure and mechanical properties. Metals 9, 992 (2019).CrossRefGoogle Scholar
Guillon, O., Gonzalez-Julian, J., Dargatz, B., Kessel, T., Schierning, G., Rathel, J., and Herrmann, M.: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014).CrossRefGoogle Scholar
Hu, Z.Y., Zhang, Z.H., Cheng, X.W., Wang, F.C., Zhang, Y.F., and Li, S.L.: A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater. Des. 191, 108662 (2020).CrossRefGoogle Scholar
Ji, W., Wang, W., Wang, H., Zhang, J., Wang, Y., Zhang, F., and Fu, Z.: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2015).CrossRefGoogle Scholar
Alshataif, Y.A., Sivasankaran, S., Al-Mufadi, F.A., Alaboodi, A.S., and Ammar, H.R.: Synthesis, structure, and mechanical response of Cr0.26Fe0.24Al0.5 and Cr0.15Fe0.14Al0.30Cu0.13Si0.28 nanocrystallite entropy alloys. Adv. Powder Technol. 31, 2161 (2020).CrossRefGoogle Scholar
Chen, Y.L., Hu, Y.H., Hsieh, C.A., Yeh, J.W., and Chen, S.K.: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481, 768 (2009).CrossRefGoogle Scholar
Xie, Y., Cheng, H., Tang, Q., Chen, W., Chen, W., and Dai, P.: Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics 93, 228 (2018).CrossRefGoogle Scholar
Praveen, S., Anupam, A., Sirasani, T., Murty, B.S., and Kottada, R.S.: Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans. Indian Inst. Met. 66, 369 (2013).CrossRefGoogle Scholar
Praveen, S., Anupam, A., Tilak, R., and Kottada, R.S.: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys. 210, 57 (2018).CrossRefGoogle Scholar
Cheng, H., Chen, W., Liu, X., Tang, Q., Xie, Y., and Dai, P.: Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater. Sci. Eng. A 719, 192 (2018).CrossRefGoogle Scholar
Pohan, R.M., Gwalani, B., Lee, J., Alam, T., Hwang, J.Y., Ryu, H.J., Banerjee, R., and Hong, S.H.: Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 62 (2018).CrossRefGoogle Scholar
Vaidya, M., Muralikrishna, G.M., and Murty, B.S.: High-entropy alloys by mechanical alloying: A review. J. Mater. Res. 34, 664 (2019).CrossRefGoogle Scholar
Rogal, L., Szklarz, Z., Bobrowski, P., Kalita, D., Garzeł, G., Tarasek, A., Kot, M., and Szlezynger, M.: Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni base high entropy alloys obtained using powder metallurgy. Met. Mater. Int. 25, 930 (2019).CrossRefGoogle Scholar
Wen, D., Jiang, B., Wang, Q., Yu, F., Li, X., Tang, R., Zhang, R., Chen, G., and Dong, C.: Influences of Mo/Zr minor-alloying on the phase precipitation behavior in modified 310S austenitic stainless steels at high temperatures. Mater. Des. 128, 34 (2017).CrossRefGoogle Scholar
Peyrouzet, F., Hachet, D., Soulas, R., Navone, C., Godet, S., and Gorsse, S.: Selective laser melting of Al0.3CoCrFeNi high-entropy alloy: Printability, microstructure, and mechanical properties. JOM 71, 3443 (2019).CrossRefGoogle Scholar
Alshataif, Y.A., Sivasankaran, S., Al-Mufadi, F.A., Alaboodi, A.S., and Ammar, H.R.: Manufacturing methods, microstructural and mechanical properties evolutions of high-entropy alloys: A review. Met. Mater. Int. 26, 1099 (2020).CrossRefGoogle Scholar
Sriharitha, R., Murty, B.S., and Kottada, R.S.: Thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J. Alloys Compd. 583, 419 (2014).CrossRefGoogle Scholar
Gwalani, B., Pohan, R.M., Lee, J., Lee, B., Banerjee, R., Ryu, H.J., and Hong, S.H.: High-entropy alloy strengthened by in situ formation of entropy-stabilized nano-dispersoids. Sci. Rep. 8, 14085 (2018).CrossRefGoogle ScholarPubMed