Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T03:54:07.313Z Has data issue: false hasContentIssue false

Post-annealing induced defects and their influences on Bi2Sr2CaCu2Oy superconducting thin films

Published online by Cambridge University Press:  03 March 2011

Xiao Feng Zhang
Affiliation:
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, People's Republic of China
Get access

Abstract

Defects in Bi2Sr2Can-1CunOy superconducting thin films annealed in an oxygen atmosphere are examined by high-resolution electron microscopy (HREM). In addition to the majority 2212 (n = 2) phase, subsequent slabs of other homologous phases with n values up to n = 10 are found intergrown in the films. Large-angle tilt grain boundaries and various secondary phases such as CuO, Sr-Cu-O oxides are formed in the films. The occurrence of these defects is attributed to an inhomogeneous Sr, Ca, and Cu distribution induced by the post-annealing. Superconducting transition temperature (Tc) is increased by the annealing under suitable conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hazen, R. M., Prewitt, C. T., Angel, R. T., Ross, N. L., Fingee, L. W., Hadidiacos, C. G., Veblen, D. R., Heaney, P. J., Hor, P. H., Meng, R. L., Sun, Y. Y., Wang, Y. Q., Xue, Y. Y., Huang, Z. J., Gao, L., Bechtold, J., and Chu, C. W., Phys. Rev. Lett. 60, 1174 (1988).Google Scholar
2Bando, Y., Kijima, T., Kitami, Y., Yanaka, J., Izumi, F., and Yokoyama, M., Jpn. J. Appl. Phys. 27, L358 (1988).Google Scholar
3Matsui, Y., Maeda, H., Tanaka, Y., and Horiuchi, S., Jpn. J. Appl. Phys. 27, L372 (1988).Google Scholar
4Matsui, Y. and Horiuchi, S., Jpn. J. Appl. Phys. 27, L2306 (1988).Google Scholar
5Zandbergen, H. W., Groen, W. A., Mijlhoff, F. C., van Tendeloo, G., and Amelinckx, S., Physica C156, 325 (1988).Google Scholar
6Eibl, O., Physica C 168, 215 (1990).Google Scholar
7Ramesh, R., Remschnig, K., Tarascon, J. M., and Green, S. M., J. Mater. Res. 6, 278 (1991).Google Scholar
8Eibl, O., Physica C 168, 249 (1990).Google Scholar
9Eibl, O., Physica C 175, 419 (1991).Google Scholar
10Lösch, S., Budin, H., Eibl, O., Hartmann, M., Rentschler, T., Rygula, M., Kemmler-Sack, S., and Huebener, R. P., Physica C 117, 271 (1991).Google Scholar
11Ivanov, Z. and Brorsson, G., Appl. Phys. Lett. 55, 2123 (1989).Google Scholar
12Ludorf, W., Wang, X. Z., and Bäuerle, D., Appl. Phys. A 49, 221 (1989).Google Scholar
13Schmitt, P., Schultz, L., and Saemann-Ischenko, G., Physica C 168, 475 (1990).Google Scholar
14Schmitt, P., Kummeth, P., Schultz, L., and Saemann-Ischenko, G., Phys. Rev. Lett. 67, 267 (1991).Google Scholar
15Egami, Y., Tabata, H., Kinugasa, M., Kawai, T., and Kawai, S., Jpn. J. Appl. Phys. 30, L478 (1991).Google Scholar
16Razavi, F. S. and Habermeier, H. U., Physica C 180, 81 (1991).Google Scholar
17Zhang, X. F., Kabius, B., Urban, K., Schmitt, P., Schultz, L., and Saemann-Inchenko, G., Physica C 183, 379 (1991).Google Scholar
18Zhang, X. F., Kabius, B., Urban, K., Schmitt, P., Schultz, L., and Saemann-Inchenko, G., Physica C 194, 253 (1992).Google Scholar
19Zhang, X. F., Philos. Mag. Lett. 68, 117 (1993).Google Scholar
20Zhang, X. F., Kabius, B., and Urban, K., Mater. Sci. Forum 129, 119 (1993).Google Scholar
21Matsuhata, H., Kuroda, K., Kasai, Y., Bodin, P., and Sakai, S., Mater. Sci. Forum 129, 129 (1993).Google Scholar
22Ono, A., Jpn. J. Appl. Phys. 28, L54 (1989).Google Scholar
23Idemoto, Y. and Fueki, K., Physica C 168, 167 (1990).Google Scholar
24Idemoto, Y., Fujiwara, S., and Fueki, K., Physica C 176, 325 (1991).Google Scholar
25Triscone, G., Genoud, J. Y., Graf, T., Junod, A., and Muller, J., Physica C 176, 247 (1991).Google Scholar
26Pham, A. Q., Hervieu, M., Maignan, A., Michel, C., Provost, J., and Raveau, B., Physica C 194, 243 (1992).Google Scholar
27Klotz, S. and Schilling, J. S., Physica C209, 499 (1993).Google Scholar
28Kung, P. J. and Muenchausen, R. E., J. Vac. Sci. Technol. A 11, 1354 (1993).Google Scholar
29Sugimoto, T., Yuoshida, M., Yuhya, S., Baar, D. J., Shiohara, Y., and Tanaka, S., J. Appl. Phys. 70, 1600 (1991).Google Scholar
30Amelinckx, S., “Dislocations in Solids” edited by Nabarro, F. R. N., (1979), Vol. 2.Google Scholar
31Wagner, P., Hillmer, F., Frey, U., Adrian, H., Steinborn, T., Ranno, L., Elschner, A., Heyvaert, I., and Bruynseraede, Y., Physica C 215, 123 (1993).Google Scholar
32Chippindale, A. M., Hibble, S. J., Hriljac, J. A., Cowey, L., Bagguley, D. M. S., Day, P., and Cheetham, A. K., Physica C 152, 154 (1988).Google Scholar
33Lee, P., Gao, Y., Sheu, H. S., Petricek, V., Restori, R., Coppens, P., Darovskikh, A., Phillips, J. C., Sleight, A. W., and Subramanian, M. A., Science 224, 62 (1988).Google Scholar
34Holesinger, T. G., Miller, D. J., and Chumbley, L. S., Physica C 217, 85 (1993).Google Scholar
35Knizek, K., Pllert, E., Sedmidubsky, D., Hejtmanek, J., and Pracharova, J., Physica C 216, 211 (1993).Google Scholar
36Horiuchi, S., Schoda, K., Wu, X. J., Nozaki, H., and Tsutsumi, M., Physica C 168, 205 (1990).Google Scholar
37Rubin, L. M., Orlando, T. P., Vander Sande, J.B., Gorman, G., Savoy, R., Swope, R., and Beyers, R., Physica C 217, 227 (1993).Google Scholar
38Dhere, N. G., Goral, J. P., Mason, A. R., Parikh, N. R., and Ptnaik, B. K., Science and Technology of Thin Film Superconductors, edited by McConnell, R.D. and Wolf, S.A. (Plenum Press, New York), p. 407.Google Scholar
39Sugimoto, T., Yoshida, M., Sugawara, K., Shiohara, Y., and Tanaka, S., Appl. Phys. Lett. 58, 1103 (1991).Google Scholar
40Nakayama, Y., Tsukada, I., and Uchinokura, K., J. Appl. Phys. 70, 4371 (1991).Google Scholar