Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T12:50:48.106Z Has data issue: false hasContentIssue false

Polyol-mediated preparation of disklike (ZnSe)2·EN precursor and its conversion to ZnSe crystals with quasi-network structure

Published online by Cambridge University Press:  03 March 2011

Guozhen Shen*
Affiliation:
Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
Di Chen
Affiliation:
Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
Kaibin Tang
Affiliation:
Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
Yitai Qian
Affiliation:
Department of Chemistry and Structure Research Laboratory, University of Science and Technology of China, Hefei 230026, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this paper, we reported the rapid synthesis of disklike (ZnSe)2·EN precursor via a simple and convenient polyol method. Annealing the precursor in argon stream at 500 °C resulted in the formation of ZnSe crystals with unique quasi-network structure. The obtained samples were characterized by powder x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, infrared absorbance spectra, and thermogravimetric analysis. The influence of PEG200 on the final products in the system was also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G. and Dresselhaus, M.S., Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science 275, 187 (1997).CrossRefGoogle ScholarPubMed
2Xu, J.F., Ji, W., Lin, J.Y., Tang, S.H. and Du, Y.W., Preparation of ZnS nanoparticles by ultrasonic radiation method. Appl. Phys. A: Mater. Sci. Proc. 66, 639 (1998).CrossRefGoogle Scholar
3Saito, Y. and Matsumoto, T., Carbon nano-cages created as cubes. Nature 392, 237 (1998).CrossRefGoogle Scholar
4Huang, J.X., Xie, Y., Li, B., Liu, Y., Qian, Y.T. and Zhang, S.Y., In-situ source-template-interface reaction to semiconductor CdS submicrometer hollow spheres. Adv. Mater. 12, 808 (2000).3.0.CO;2-P>CrossRefGoogle Scholar
5Maillard, M., Giorgio, S. and Pileni, M.P., Silver nanodisks. Adv. Mater. 14, 1084 (2002).3.0.CO;2-L>CrossRefGoogle Scholar
6Dai, Z.R., Pan, Z.W. and Wang, Z.L., Growth and structure evolution of novel tin oxide diskettes. J. Am. Chem. Soc. 124, 8673 (2002).CrossRefGoogle ScholarPubMed
7Ahmadi, T.S., Wang, Z.L., Green, T.C., Henglein, A. and Clsayed, M.A., Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924 (1996).CrossRefGoogle ScholarPubMed
8Hynh, W., Peng, X.G. and Alivisatos, A.P., CdSe nanocrystal rods/poly (3-hexylthiophene) composite photovoltaic devices. Adv. Mater. 11, 923 (1999).Google Scholar
9Schlamp, M.C., Peng, X.G. and Alivisatos, A.P., Improved efficiencies in light emitting diodes made with CdSe (CdS) core/shell type nanocrystals. J. Appl. Phys. 82, 5837 (1997).CrossRefGoogle Scholar
10Lieber, C.M., One-dimensional nanostructures: Chemistry, physics and applications. Solid State Commun. 107,607 (1998).Google Scholar
11Smalley, R.E. and Yakobson, B.I., The future of the fullerenes. Solid State Commun. 107, 597 (1998).CrossRefGoogle Scholar
12Alivisatos, A.P., Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933 (1996).Google Scholar
13Lakshmikumar, S.T. and Rastogi, A.C., Novel two-stage selenization process for the preparation of ZnSe films. Thin Solid Films 259,150 (1995).Google Scholar
14Lokhande, C.D., Patil, P.S., Tributsch, H. and Ennaoni, A., ZnSe thin films by chemical bath deposition method. Sol. Energy Mater. Sol. Cells 55, 379 (1998).CrossRefGoogle Scholar
15Deng, Z.X., Wang, C., Sun, X.M. and Li, Y.D., Structure-directing coordination template effect of ethylenediamnine in formations of ZnS and ZnSe nanocrystallites via solvothermal route. Inorg. Chem. 41, 869 (2002).Google Scholar
16Komarner, S., Li, D.S., Newalkar, B., Katsuki, H. and Bhalla, A.S., Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18, 5959 (2002).CrossRefGoogle Scholar
17Fievet, F., Lagier, J.P. and Figlarz, M., Submicrometer size by the polyol process. MRS Bull. 24, 29 (1989).CrossRefGoogle Scholar
18Sun, S.H., Murray, C.B., Weller, D., Folks, L. and Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989 (2000).CrossRefGoogle ScholarPubMed
19Sun, Y.G. and Xian, Y.N., Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).CrossRefGoogle ScholarPubMed
20Feldmann, C. and Jungk, H.O., Polyol-mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed. 40, 359 (2001).3.0.CO;2-B>CrossRefGoogle ScholarPubMed
21Feldmann, C. and Metzmacher, C., Polyol-mediated synthesis of nanoscale MS particles (M=Zn, Cd, Hg). J. Mater. Chem. 11, 2603 (2001).CrossRefGoogle Scholar
22Shen, G.Z., Chen, D., Tang, K.B., Liu, X.M., Huang, L.Y. and Qian, Y.T., General synthesis of metal sulfides nanocrystallines via a simple polyol route. J. Solid State Chem. 173, 232 (2003).CrossRefGoogle Scholar
23Shen, G.Z., Chen, D., Tang, K.B., Li, F.Q. and Qian, Y.T., Large-scale synthesis of uniform urchin-like patterns of Bi2S3 nanorods through a rapid polyol process. Chem. Phys. Lett. 370, 334 (2003).CrossRefGoogle Scholar
24Shen, G.Z., Chen, D., Tang, K.B. and Qian, Y.T., Characterization of ZnSe spheres via a rapid polyol process. J. Cryst. Growth, 257, 276 (2003).Google Scholar
25Wang, W.Z., Zhan, Y.J. and Wang, G.H., One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant. Chem. Commun. 727 (2001).CrossRefGoogle Scholar
26Dobryszycki, J. and Biallozor, S., On some organic inhibitors of zinc corrosion in alkaline media. Corros. Sci. 43,1309 (2001).Google Scholar
27Liu, X.H.J.Yang, Wang, L., Yang, X.J., Lu, L.D. and Wang, X., An improvement on sol-gel method for preparing ultrafine and crystallized titania powder. Mater. Sci. Eng. A 289,241 (2000).CrossRefGoogle Scholar