Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T01:54:06.114Z Has data issue: false hasContentIssue false

Polymer-derived Si3N4−ZrO2 nanocomposite powders

Published online by Cambridge University Press:  31 January 2011

Gian Domenico Sorarù
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050 Mesiano-Trento, Italy
Alberto Ravagni
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050 Mesiano-Trento, Italy
Roberto Dal Maschio
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050 Mesiano-Trento, Italy
Giovanni Carturan
Affiliation:
Dipartimento di Ingegneria dei Materiali, Università di Trento, 38050 Mesiano-Trento, Italy
Florence Babonneau
Affiliation:
Chimie de la MatiéGre Condensée, Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France
Get access

Abstract

A Zr-modified polycarbosilane has been obtained reacting a zirconium alkoxide with a polycarbosilane. This new preceramic polymer has been nitridated in flowing ammonia up to 1000 °C. The conversion process of the polymer precursor to the Si–N–Zr–O ceramic has been followed mainly by FT-IR, XRD, and TEM investigations. The formation of the Si–N–Si network starts at 600 °C. At 1000 °C the system can be described as an amorphous silicon nitride ceramic in which very fine zirconia-based particles are dispersed. Increasing the temperature to 1300 °C results in the crystallization of t-ZrO2 microcrystals (35 Å in size). At higher temperatures the crystallization of the silicon nitride matrix into β–Si3N4 has been observed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yajima, S., Omori, M., Hayashi, J., Okamura, K., Matsuzawa, T., and Liaw, C-F., Chem. Lett. 551 (1976).CrossRefGoogle Scholar
2.Peuckert, M., Vaahs, T., and Brack, M., Adv. Mater. 2, 398 (1990).CrossRefGoogle Scholar
3.Fischer, H. E., Larkin, D. J., and Interrante, L. V., Mater. Res. Soc. Bull. XVI, 59 (1991).CrossRefGoogle Scholar
4.Kodama, H. and Miyoshi, T., Adv. Cerara. Mater. 3, 177 (1988).Google Scholar
5.Riedel, R., Seher, M., and Becker, G., J. Europ. Ceram. Soc. 5, 113 (1989).CrossRefGoogle Scholar
6.Passing, G., Riedel, R., and Petzow, G., J. Am. Ceram. Soc. 74, 642 (1991).CrossRefGoogle Scholar
7.Seyfcrth, D., Wiseman, G. H., and Prud'homme, C., J. Am. Ceram. Soc. 66, C13 (1983).Google Scholar
8.Okamura, K., Sato, M., and Hasegawa, Y., Ceram. Int. 13, 55 (1987).CrossRefGoogle Scholar
9.Burns, G. T. and Chandra, G., J. Am. Ceram. Soc. 72, C333 (1989).CrossRefGoogle Scholar
10.Sorarù, G. D., Babonneau, F., and Mackenzie, J. D., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 815.Google Scholar
11.Sorarù, G. D., Ravagni, A., Campostrini, R., and Babonneau, F., J. Am. Ceram. Soc. 74, 2220 (1991).CrossRefGoogle Scholar
12.Yajima, S., Iwai, T., Yamamura, T., Okamura, K., and Hasegawa, Y., J. Mater. Sci. 16, 1349 (1981).CrossRefGoogle Scholar
13.Taki, T., Inui, M., Okamura, K., and Sato, M., J. Mater. Sci. Lett. 8, 1119 (1989).CrossRefGoogle Scholar
14.Yajima, S., Hasegawa, Y., Hayashi, J., and Imura, M., J. Mater. Sci. 13, 2569 (1978).Google Scholar
15.Babonneau, F. and Sorarù, G. D., J. Europ. Ceram. Soc. 8, 29 (1991).CrossRefGoogle Scholar
16.Wada, N., Solin, S. A., Wong, J., and Prochazka, S., J. Non-Cryst. Solids 43, 7 (1981).CrossRefGoogle Scholar
17.Luongo, J. P., Appl. Spectrosc. 38, 195 (1984).CrossRefGoogle Scholar
18.Tsyganenko, A. A. and Babaeva, M. A., Opt. Spektrosk. 54, 1117 (1983).Google Scholar
19.Dijen, F. K. van and Pluijmakers, J., J. Europ. Ceram. Soc. 5, 385 (1989).CrossRefGoogle Scholar
20.Carduner, K. R., Carter, R. O. III, Milberg, M. E., and Crosbie, G. M., Anal. Chem. 59, 2794 (1987).CrossRefGoogle Scholar
21.Dupree, R., Lewis, M. H., Leng-Ward, G., and Williams, D. S., J. Mater. Sci. 4, 393 (1985).Google Scholar