Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T11:46:35.637Z Has data issue: false hasContentIssue false

Point defect incorporation during diamond chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

C. C. Battaile
Affiliation:
Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136
D. J. Srolovitz
Affiliation:
Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136
J. E. Butler
Affiliation:
Gas/Surface Dynamics Section, Code 6174, Naval Research Laboratory, Washington, District of Columbia 20375-5342
Get access

Abstract

The incorporation of vacancies, H atoms, and sp2 bond defects into single-crystal homoepitaxial (100) (2 × 1)–and (111)-oriented chemical-vapor-deposited diamond was simulated by atomic-scale kinetic Monte Carlo. Simulations were performed for substrate temperatures from 600 to 1200 °C with 0.4% CH4 in the feed gas, and for 0.4–7% CH4 feeds with a substrate temperature of 800 °C. The concentrations of incorporated H atoms increased with increasing substrate temperature and feed gas composition, and sp2 bond trapping increased with increasing feed gas composition. Vacancy concentrations were low under all conditions. The ratio of growth rate to H atom concentration was highest around 800–900°C, and the growth rate to sp2 ratio was maximum around 1% CH4, suggesting that these conditions are ideal for economical diamond growth under simulated conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zhu, W., in Diamond: Electronic Properties and Applications, edited by Pan, L.S., and Kania, D.R. (Kluwer, Norwell, MA, 1995) pp. 175239.CrossRefGoogle Scholar
2.Burton, N.C., Butler, J.E., Lang, A.R., and Steeds, J.W., Proc. R. Soc. Lond. A 449, 555 (1995).Google Scholar
3.Goodwin, D.G. and Butler, J.E., in Handbook of Industrial Diamonds and Diamond Films, edited by Prelas, M.A., Popovici, G., and Bigelow, L.K. (Dekker, New York, 1997) pp. 527.Google Scholar
4.Angus, J.C., Argoitia, A., Gat, R., Li, Z., Sunkara, M., Wang, L., and Wang, Y., Phil. Trans. R. Soc. Lond. A 342, 195 (1993).Google Scholar
5.DeVries, R.C., Ann. Rev. Mater. Sci. 17, 161 (1987).CrossRefGoogle Scholar
6.Coltrin, M.E. and Dandy, D.S., J. Appl. Phys. 74, 5803 (1993).CrossRefGoogle Scholar
7.Frenklach, M. and Wang, H., Phys. Rev. B 43, 1520 (1991).CrossRefGoogle Scholar
8.Dawnkaski, E.J., Srivastava, D., and Garrison, B.J., J. Chem. Phys. 104, 5997 (1996).CrossRefGoogle Scholar
9.Clark, M.M., Raff, L.M., and Scott, H.L., Comp. Phys. 10, 584 (1996).CrossRefGoogle Scholar
10.Battaile, C., Srolovitz, D.J., and Butler, J.E., in Thin Films: Surface and Morphology, edited by Cammarata, R., Chason, E., Einstein, T., and Williams, E., (Mater. Res. Soc. Symp. Proc. 441, Warrendale, PA, 1997) pp. 509.Google Scholar
11.Belton, D.N. and Harris, S.J., J. Chem. Phys. 96, 2371 (1992).CrossRefGoogle Scholar
12.Harris, S.J. and Goodwin, D.G., J. Phys. Chem. 97, 2328 (1993).CrossRefGoogle Scholar
13.Skokov, S., Weiner, B., and Frenklach, M., J. Phys. Chem. 99, 5616 (1995).CrossRefGoogle Scholar
14.Harris, S.J. and Weiner, A.M., Appl. Phys. Lett. 53, 1605 (1988).CrossRefGoogle Scholar
15.Hsu, W.L., Appl. Phys. Let. 59, 1427 (1991).CrossRefGoogle Scholar
16.Celii, F.G. and Butler, J.E., J. Appl. Phys. 71, 2877 (1992).CrossRefGoogle Scholar
17.Warnatz, J., in Combustion Chemistry, edited by Gardiner, W.C. (Springer-Verlag, Berlin, 1984).Google Scholar
18.Garrison, B.J., Dawnkaski, E.J., Srivastava, D., Brenner, D.W., Science 255, 835 (1992).CrossRefGoogle Scholar
19.Dandy, D.S. and Coltrin, M.E., J. Appl. Phys. 76, 3102 (1994).CrossRefGoogle Scholar
20.Battaile, C.C., Srolovitz, D.J., and Butler, J.E., J. Appl. Phys. 82, 6293 (1997).CrossRefGoogle Scholar
21.Bortz, A.B., Kalos, M.H., and Lebowitz, J.L., J. Comp. Phys. 17, 10 (1975).CrossRefGoogle Scholar
22.McNamara, K.M., Williams, B.E., Gleason, K.K., and Scruggs, B.E., J. Appl. Phys. 76, 2466 (1994).CrossRefGoogle Scholar
23.Ingram, D.C., Keay, J.C., Tang, C., Lake, M.L., and Ting, J-M., Diam. Rel. Mater. 2, 1414 (1993).CrossRefGoogle Scholar
24.Jia, H., Shinar, J., Lang, D.P., and Pruski, M., Phys. Rev. B 48, 17595 (1993).CrossRefGoogle Scholar
25.Chu, C.J., D'Evelyn, M.P., Hauge, R.H., and Margrave, J.L., J. Appl. Phys. 70, 1695 (1991).CrossRefGoogle Scholar
26.Harris, S.J., Weiner, A.M., Prawer, S., and Nugent, K., J. Appl. Phys. 80, 2187 (1996).CrossRefGoogle Scholar
27.Butler, J.E. and Woodin, R.L., Phil. Trans. R. Soc. Lond. A 342, 209 (1993).Google Scholar
28.Spear, K.E., J. Am. Ceram. Soc. 72, 171 (1989).CrossRefGoogle Scholar
29.Kondoh, E., Ohta, T., Mitomo, T., and Ohtsuka, K.. J. Appl. Phys. 73, 3041 (1993).CrossRefGoogle Scholar
30.Rawles, R.E., Morris, W.G., and D'Evelyn, M.P., in Diamond for Electronic Applications, edited by Dreifus, D.L., Collins, A., Humphreys, T., Das, K., and Pehrsson, P.E., (Mater. Res. Soc. Symp. Proc. 416, Pittsburgh, PA, 1996) pp. 13.Google Scholar
31.Chu, C.J., Hauge, R.H., Margrave, J.L., and D'Evelyn, M.P., Appl. Phys. Lett. 61, 1393 (1992).CrossRefGoogle Scholar