Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:49:35.277Z Has data issue: false hasContentIssue false

Plasticity of a TiCu-based bulk metallic glass: Effect of cooling rate

Published online by Cambridge University Press:  31 January 2011

J. Shen*
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Y.J. Huang
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
J.F. Sun
Affiliation:
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Compressive deformation was experimentally investigated for Ti41.5Cu42.5Zr2.5Hf5Ni7.5Si1 bulk metallic glass (BMG) fabricated at different cooling rates. It was found that the ductility of the BMG alloy increased with increasing of the cooling rate in solidification. The alloy with a monolithic amorphous structure exhibited a large ductility, up to 12%. The effect of cooling rate on the ductility of the BMG alloy is interpreted in terms of the variation in amorphous nature and free volume of the as-cast materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 2000CrossRefGoogle Scholar
2Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 1999CrossRefGoogle Scholar
3Wang, W.H., Dong, C.Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 2004CrossRefGoogle Scholar
4He, G., Eckert, J.Löser, W.: Novel Ti-base nanostructure– dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 2003CrossRefGoogle ScholarPubMed
5Hays, C.C., Kim, C.P.Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 2000CrossRefGoogle ScholarPubMed
6Inoue, A., Zhang, T., Chen, M.W., Sakurai, T., Saida, J.Matsushita, M.: Formation and properties of Zr-based bulk quasicrystalline alloys with high strength and good ductility. J. Mater. Res. 15, 2195 2000CrossRefGoogle Scholar
7Conner, R.D., Dandliker, R.B.Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25 Ti13.75Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 1998CrossRefGoogle Scholar
8Kim, Y.C., Fleury, E., Lee, J-C.Kim, D.H.: Origin of the simultaneous improvement of strength and plasticity in Ti-based bulk metallic glass matrix composites. J. Mater. Res. 20, 2474 2005CrossRefGoogle Scholar
9Bae, D.H., Lee, M.H., Kim, D.H.Sordelet, D.J.: Plasticity in Ni59Zr20Ti16Si2Sn3 metallic glass matrix composites containing brass-fibers synthesized by warm extrusion of powders. Appl. Phys. Lett. 83, 2312 2003CrossRefGoogle Scholar
10Choi-Yim, H.Johnson, W.L.: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 1997CrossRefGoogle Scholar
11Xing, L.Q., Li, Y., Ramesh, K.T., Li, J.Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64, 180201 2001CrossRefGoogle Scholar
12Schroers, J.Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 2004CrossRefGoogle ScholarPubMed
13Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H.Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 2005CrossRefGoogle ScholarPubMed
14Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H.Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 2006CrossRefGoogle Scholar
15Eckert, J., Das, J., Kim, K.B., Baier, F., Tang, M.B., Wang, W.H.Zhang, Z.F.: High strength ductile Cu-base metallic glass. Intermetallics 14, 876 2006CrossRefGoogle Scholar
16Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H.Kim, Y.C.: Enhancement of the glass forming ability of Cu-Zr-Al alloys by Ag addition. Metal Mater. Int. 10, 575 2004CrossRefGoogle Scholar
17Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E.Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 2005CrossRefGoogle Scholar
18Calin, M., Eckert, J.Schultz, L.: Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 48, 653 2003CrossRefGoogle Scholar
19Dong, W.B., Zhang, H.F., Cai, J., Sun, W.S., Wang, A.M., Li, H.Hu, Z.Q.: Enhanced plasticity in a Zr-based bulk metallic glass containing nanocrystalline precipitates. J. Alloys Comp. 425, L1 2006CrossRefGoogle Scholar
20Men, H.Zhang, T.: A bulk glassy Cu–Zr–Ti–Sn alloy with superior plasticity. Mater. Trans. 46, 2545 2006CrossRefGoogle Scholar
21Saida, J., Setyawan, A.D.H., Kato, H.Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr–Al–Ni–Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 2005CrossRefGoogle Scholar
22Lee, S.K., Huh, M.Y., Fleury, E.Lee, J.C.: Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys. Acta Mater. 54, 349 2006CrossRefGoogle Scholar
23Kim, Y.C., Na, J.H., Park, J.M., Kim, D.H., Lee, Y.H.Kim, W.T.: Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses. Appl. Phys. Lett. 83, 3093 2003CrossRefGoogle Scholar
24Park, J.M., Chang, H.J., Han, K.H., Kim, W.T.Kim, D.H.: Enhancement of plasticity in Ti-rich Ti–Zr–Be–Cu–Ni bulk metallic glasses. Scripta Mater. 53, 1 2005CrossRefGoogle Scholar
25Zeng, Y.Q., Nishiyama, N., Wada, T., Louzguine-Luzgin, D.V.Inoue, A.: Ni-rich Ni–Pd–P glassy alloy with high strength and good ductility. Mater. Trans. 47, 175 2006CrossRefGoogle Scholar
26Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z.Hu, Z.Q.: Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scripta Mater. 54, 1145 2006CrossRefGoogle Scholar
27Yao, K.F., Ruan, F., Yang, Y.Q.Chen, N.: Superductile bulk metallic glass. Appl. Phys. Lett. 88, 122106 2006CrossRefGoogle Scholar
28Lee, M.H., Lee, J.Y., Bae, D.H., Kim, W.T., Sordelet, D.J.Kim, D.H.: A development of Ni-based alloys with enhanced plasticity. Intermetallics 12, 1133 2004CrossRefGoogle Scholar
29Park, E.S., Kim, D.H., Ohkubo, T.Hono, K.: Enhancement of glass forming ability and plasticity by addition of Nb in Cu– Ti–Zr–Ni–Si bulk metallic glasses. J. Non-Cryst. Solids 351, 1232 2005CrossRefGoogle Scholar
30Guo, F.Q., Wang, H.J., Poon, S.J.Shiflet, G.J.: Ductile titanium-based glassy alloy ingots. Appl. Phys. Lett. 86, 091907 2005CrossRefGoogle Scholar
31Lin, X.H.Johnson, W.L.: Formation of Ti–Zr–Cu–Ni bulk metallic glass. J. Appl. Phys. 78, 6514 1995CrossRefGoogle Scholar
32Ma, C.L., Soejima, H., Ishihara, S., Amiya, K., Nishiyama, N.Inoue, A.: New Ti-based bulk glassy alloys with high glass-forming ability and superior mechanical properties. Mater. Trans. 45, 3223 2004CrossRefGoogle Scholar
33Zhang, Z.F., He, G., Zhang, H.Eckert, J.: Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites. Scripta Mater. 52, 945 2005CrossRefGoogle Scholar
34Zhang, Z.F.Eckert, J.: Unified tensile fracture criterion. Phys. Rev. Lett. 94, 094301 2005CrossRefGoogle ScholarPubMed
35Liu, C.T., Heatherly, L., Eaton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A.Inoue, A.: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811 1998CrossRefGoogle Scholar
36Turnbull, D.Cohen, M.H.: On the free-volume model of the liquid-glass transition. J. Chem. Phys. 52, 3038 1970CrossRefGoogle Scholar
37Steif, P.S., Spaepen, F.Hutchinson, J.W.: Strain localization in amorphous metals. Acta Metall. 30, 447 1982CrossRefGoogle Scholar
38Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 1977CrossRefGoogle Scholar
39van den Beukel, A.Sietsma, J.: The glass transition as a free volume related kinetics phenomenon. Acta Metall. Mater. 38, 383 1990CrossRefGoogle Scholar