Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T07:31:59.887Z Has data issue: false hasContentIssue false

Plastic deformation of oxide scales at elevated temperatures

Published online by Cambridge University Press:  31 January 2011

Yifan Zhang
Affiliation:
Corrosion Research Center, Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
William W. Gerberich
Affiliation:
Corrosion Research Center, Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
David A. Shores
Affiliation:
Corrosion Research Center, Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455
Get access

Abstract

The atomic force microscope (AFM) has been used to observe and characterize for the first time surface steps and grooves on the faces of Cr2O3 grains formed as an oxide scale on Ni−30Cr and Ni−30Cr−0.5Y alloys during high temperature oxidation. The very high spatial resolution of the AFM is required to characterize these features. We propose that these surface features, whose dimensions are in the range of nanometers and tens of nanometers, may be interpreted as evidence of highly localized plastic deformation of the oxide scale. The size and spacing of the steps and grooves are consistent with models of plastic deformation based on slip bands derived from dislocation climb or dislocation glide. Mechanical twinning and the models for stress-driven surface instability are also possibly responsible for some surface features. The addition of yttrium to the alloy seemed to enable enhanced plastic deformation of the scale. The strain corresponding to the observed features, estimated by simple models, could relax a significant part of oxide growth and thermal stresses.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Stringer, J., Corrosion Sci. 10, 513 (1970).CrossRefGoogle Scholar
2.Tien, J. K. and Davidson, J. M., in Stress Effects and the Oxidation of Metals, edited by Cathcart, J. V. (The Metall. Soc. of AIME, 1974), pp. 201219.Google Scholar
3.Schütze, M., Oxid. Met. 24, 199 (1985).CrossRefGoogle Scholar
4.Schütze, M., in High Temperature Corrosion of Advanced Materials and Protective Coatings, edited by Saito, Y., Onay, B., and Maruyama, T. (North-Holland, Tokyo, Japan, 1990), p. 39.Google Scholar
5.Schütze, M., Int. J. Pres. Ves. & Piping 47, 293 (1991).CrossRefGoogle Scholar
6.Tinker, M. T. and Hobbs, L. W., in Proceedings of the 39th Annual Meeting of Electron Microscopy Society of America, edited by Bailey, G. W. (Claitor's Publishing Division, Atlanta, 1981), p. 86.Google Scholar
7.Srolovitz, D. J., Acta Metall. 37 (2), 621 (1989).CrossRefGoogle Scholar
8.Freund, L. B. and Jonsdottir, F., J. Mech. Phys. Solids 41 (7), 1245 (1993).CrossRefGoogle Scholar
9.Gao, H., Int. J. Solids Structures 28 (6), 703 (1993).CrossRefGoogle Scholar
10.Grilhe, J., Acta Metall. Mater. 41 (3), 909 (1993).CrossRefGoogle Scholar
11.Harvey, S. E., Angelo, J. E., and Gerberich, W. W., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E. Jr, and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 433.Google Scholar
12.Harvey, S. E., Nanoscopic Probes of Surface Instabilities, University of Minnesota, Ph.D. Thesis (1995).Google Scholar
13.Binning, G., Quate, C. F., and Gerber, C., Phys. Rev. Lett. 56 (9), 930 (1986).CrossRefGoogle Scholar
14.Heinzelmann, H., Meyer, E., Grutter, P., Hidber, H. R., Rosenthaler, L., and Guntherodt, H. J., J. Vac. Sci. Technol. A 6 (2), 275 (1988).CrossRefGoogle Scholar
15.Czerwinski, F., Szpunar, J. A., Macaulay-Newcombe, R. G., and Smeltzer, W. W., Oxid. Met. 43 (1/2), 25 (1995).CrossRefGoogle Scholar
16.Lillerud, K. P. and Kofstad, P., J. Electrochem. Soc. 127, 2397 (1980).CrossRefGoogle Scholar
17.Lillerud, K. P. and Kofstad, P., J. Electrochem. Soc. 127, 2410 (1980).CrossRefGoogle Scholar
18.Lillerud, K. P. and Kofstad, P., Oxid. Met. 17, 127 (1982).CrossRefGoogle Scholar
19.Ecer, G. M. and Meier, G. H., Oxid. Met. 13, 119 (1979).CrossRefGoogle Scholar
20.Giggins, C. S. and Pettit, F. S., Trans. Metall. Soc. AIME 245, 2495 (1969).Google Scholar
21.Rhys-Jones, T. N., Grabke, H. J., and Kudielka, H., Corro. Sci. 27, 49 (1987).CrossRefGoogle Scholar
22.Rhys-Jones, T. N. and Grabke, H. J., Mater. Sci. Technol. 4, 446 (1988).CrossRefGoogle Scholar
23.Whittle, D. P. and Stringer, J., Philos. Trans. Roy. Soc. London A 295, 309 (1980).Google Scholar
24.Moon, D. P. and Bennett, M. J., Mater. Sci. Forum 43, 269298 (1989).CrossRefGoogle Scholar
25.Delaunay, D. and Huntz, A. M., J. Mater. Sci. 17, 2027 (1982).CrossRefGoogle Scholar
26.Zhang, Y., Zhu, D., and Shores, D. A., Acta Metall. Mater. 43 (11), 40154025 (1995).CrossRefGoogle Scholar
27.Barnes, J. J., Goedjen, J. G., and Shores, D. A., Oxid. Met. 32 (5/6), 449469 (1989).CrossRefGoogle Scholar
28.Zhu, D., Stout, J. H., and Shores, D. A., Determination of Stress Gradients in a Thermally Grown Oxide Layer using X-ray Diffraction, in Conf. on High Temperature Corrosion (Materials Science Forum, 1996, in press).Google Scholar
29.Dowling, N. E., Mechanical Behavior of Materials (Prentice-Hall, Inc., Englewood Cliffs, NJ, 1993).Google Scholar
30.Burton, B., J. Mater. Sci. 13, 219 (1978).CrossRefGoogle Scholar
31.Conrad, H., in Mechanical Behavior of Materials at Elevated Temperatures, edited by Dorn, J. E. (McGraw-Hill Book Company, Inc., Reading, MA, 1961), p. 149.Google Scholar
32.Kim, H-S. and Roberts, S., J. Am. Ceram. Soc. 77 (12), 3099 (1994).CrossRefGoogle Scholar
33.Stofel, E. and Conrad, H., Trans. Metall. Soc. AIME 227, 1053 (1963).Google Scholar
34.Conrad, H., Janowski, K., and Stofel, E., Trans. Metall. Soc. AIME 233, 255 (1965).Google Scholar
35.Heuer, A. H., Philos. Mag. 13, 379 (1966).CrossRefGoogle Scholar
36.Hockey, B. J., J. Am. Ceram. Soc. 54, 223 (1971).CrossRefGoogle Scholar
37.Bertolotti, R. L. and Scott, W. D., J. Am. Ceram. Soc. 54, 286 (1971).CrossRefGoogle Scholar
38.Becher, P. F., J. Am. Ceram. Soc. 59, 143 (1976).CrossRefGoogle Scholar
39.Scott, W. D. and Orr, K. K., J. Am. Ceram. Soc. 66, 27 (1983).CrossRefGoogle Scholar
40.Lankford, J., J. Mater. Sci. 12, 791 (1977).CrossRefGoogle Scholar