Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T12:58:03.429Z Has data issue: false hasContentIssue false

Physical properties of spinel iron oxide thin films

Published online by Cambridge University Press:  31 January 2011

C. Ortiz
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
G. Lim
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
M. M. Chen*
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
G. Castillo*
Affiliation:
IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
*
a)Also at Magnetic Recording Institute.
a)Also at Magnetic Recording Institute.
Get access

Abstract

This paper describes the complexity of the spinel iron oxides in thin-film configuration. First, the experimental deposition conditions are determined for the parameters of substrate temperature and oxygen flow such that only the “Fe3O4” phase is formed. Then a study is made of how the structural (grain size, lattice parameter, texture), magnetic (M), and optical (visible and infrared transmission) properties of the films depend on the deposition and postdeposition (air annealing) conditions. The experimental deposition region is defined where the films have the most similar physical properties to bulk Fe3O4 and subsequently, after annealing, to bulk gamma Fe2O3. Finally, a discussion is presented of a model that accounts for the anomalous, low values of the magnetic moment for the samples deposited at room temperature. The model proposes an overpopulation of the iron tetrahedral A sites.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Boppart, H., Schlegel, A., and Wachter, P., Philos. Mag. B 42, 431 (1980).CrossRefGoogle Scholar
2Sidhu, P. S., Gilkes, R. T., and Posner, A. M., J. Inorg. Nucl. Chem. 39, 1953 (1977).CrossRefGoogle Scholar
3Ouchi, H. and Umesaki, M., IEEE Trans. Mag. 19, 1980 (1983).CrossRefGoogle Scholar
4Chen, M. M., Ortiz, C., Lin, G., Sigsbee, R., and Castillo, G., IEEE Trans. Mag. 23, 3423 (1987).CrossRefGoogle Scholar
5Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York, 1958), p. 684.Google Scholar
6Messier, R. and Roy, R., J. Non-Cryst. Solids 98, 107 (1978).CrossRefGoogle Scholar
7Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Swarthmore, PA 19081.Google Scholar
8Ohta, S., Terada, A., Ishi, Y., and Hattou, S., Trans. IECE Jpn. E68, 173 (1985).Google Scholar
9Parkin, S. S. P., Sigsbee, R., Felici, R., and Felcher, G. P., Appl. Phys. Lett. 48, 604 (1986).CrossRefGoogle Scholar
10Serna, C. J., Rendon, J. L., and Iglesias, J. E., Spectrochim. Acta 38A, 797 (1982).CrossRefGoogle Scholar
11Onari, S., Arai, T., and Kudo, K., Phys. Rev. B 16, 1717 (1977).CrossRefGoogle Scholar
12Ortiz, C., Vurens, G., Chen, M. M., and Salmeron, M. (to be published).Google Scholar
13Speriosu, V. S. (privatecommunication).Google Scholar
14Aharoni, S. M. and Litt, M. H., J. Appl. Phys. 42, 352 (1970).CrossRefGoogle Scholar
15Coey, J. M. D. and Khalafalla, D., Phys. Status Solidi 11, 229 (1972).CrossRefGoogle Scholar