Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T14:53:34.210Z Has data issue: false hasContentIssue false

Photoluminescence properties of Eu3+-doped BaY2ZnO5 phosphors under near-ultraviolet irradiation

Published online by Cambridge University Press:  31 January 2011

Yee-Cheng Chang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
Yee-Shin Chang*
Affiliation:
Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan
Sean Wu
Affiliation:
Department of Electronics and Information Engineering, Tung-Fung Institute of Technology, Kaohsiung 821, Taiwan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Eu3+ ion-doped BaY2ZnO5 phosphors were synthesized using a vibrating milled solid-state reaction. The phosphors exhibit a series of Eu3+ ion intra-4f excited state 5DJ (J = 3, 2, 1, 0) transitions under an excitation of 395 nm. The maximum photoluminescence intensity for 5D07F2 transition (625 nm) was obtained at a Eu3+ ion concentration of 40 mol%; quenching occurred at higher concentrations. The critical distance (Rc) for the 5DJ (J = 3, 2, 1) → 7F1 transition was 18.1 Å, which is longer than that of 6.67 Å for the 5D07F2 transition, indicating that 5DJ (J = 3, 2, 1) is easier for concentration quench because of the cross-relaxation mechanism. The red emission of the BaY1.6Eu0.4ZnO5 phosphor has CIE chromaticity coordinates of (0.66, 0.34), which are close to the NTSC system standard red chromaticity (0.67, 0.33). BaY1.6Eu0.4ZnO5 may thus be potentially applicable as a red phosphor for ultraviolet light-emitting diodes converted in solid-state lighting technology.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shimizu, Y., Sakano, K., Noguchi, Y., Moriguchi, T. U.S. Patent No. 5,998,925 (December 7, 1998)Google Scholar
2.Toda, K., Kawakmi, Y., Kousaka, S. I., Ito, Y., Komeno, A., Uematsu, K., Sato, M.New silicate phosphors for a white LED, IEICE Trans. Electron. E89–C, (10)1406 (2006)Google Scholar
3.Hu, Y.S., Zhuang, W.D., Ye, H.Q., Wang, D.H., Zhang, S.S., Huang, X.W.A novel red phosphor for white light emitting diodes. J. Alloys Compd. 390, 226 (2005)CrossRefGoogle Scholar
4.Nishida, T., Ban, T., Kobayashi, N.High-color-rendering light sources consisting of a 350-nm ultraviolet light-emitting diode and three-basal-color phosphors. Appl. Phys. Lett. 82, 3817 (2003)CrossRefGoogle Scholar
5.Wang, Y.H., Guo, X., Endo, T., Murakami, Y., Ushirozawa, M.Identification of charge transfer (CT) transition in (Gd,Y)BO3:Eu phosphor under 100–300 nm. J. Solid State Chem. 177, 2242 (2004)CrossRefGoogle Scholar
6.Rao, R.P., Devine, D.J.RE-activated lanthanide phosphate phosphors for PDP applications. J. Lumin. 87–89, 1260 (2000)CrossRefGoogle Scholar
7.Karbowiak, M., Mech, A., Bednarkiewicz, A., Strek, W.Structural and luminescent properties of nanostructured KGdF4:Eu3+ synthesized by coprecipitation method. J. Alloys Compd. 380, 321 (2004)CrossRefGoogle Scholar
8.Tsai, B.S., Chang, Y.H., Chen, Y.C.Nanostructured red-emitting MgGa2O4:Eu3+ phosphors. J. Mater. Res. 19, 1504 (2004)CrossRefGoogle Scholar
9.Taboada, S., de Andrés, A., Sáez-Puche, R.Excitation and desexcitation processes of Eu3+ luminescence in Eu2BaZnO5. J. Alloys Compd. 275–277, 279 (1998)CrossRefGoogle Scholar
10.Kumar, D., Sankar, J., Cho, K.G., Craciun, V., Singh, R.K.Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling. Appl. Phys. Lett. 77, 2518 (2000)CrossRefGoogle Scholar
11.Lammers, M.J.J., Donker, H., Blasse, G.The luminescence of Eu3+, Tb3+ and Tm3+ activated Gd2BaZnO5 and La2BaZnO5. Mater. Chem. Phys. 13, 527 (1985)CrossRefGoogle Scholar
12.Kubota, S.I., Suzuyama, Y., Yamane, H., Shimada, M.Luminescence properties of LiSr2Y1−x LnxO4 (Ln = Eu,Tb,Tm). J. Alloys Compd. 268, 66 (1998)CrossRefGoogle Scholar
13.Blasse, G., Grabmaie, B.C.Luminescence Materials (Springer, Berlin, Heideberg 1994) Chap. 4–5 75 100–101CrossRefGoogle Scholar
14.Kaduk, J.A., Wong-Ng, W., Greenwood, W., Dillingham, J., Toby, B.H.Crystal structures and reference powder pattern of BaR2ZnO5 (R = La, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, and Tm). J. Res. Nat. Inst. Stand. Technol. 104, 147 (1999)CrossRefGoogle Scholar
15.Liang, C.H., Chang, Y.C., Chang, Y.S.Synthesis and photoluminescence characteristics of color-tunable BaY2ZnO5:Eu3+ phosphors. Appl. Phys. Lett. 93, 211902 (2008)CrossRefGoogle Scholar
16.Shionoya, S., Yen, W.M.Phosphor Handbook (CRC Press, Boca Raton, FL 1999)190Google Scholar
17.Judd, B.R.Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962)CrossRefGoogle Scholar
18.Ofelt, G.S.Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511 (1962)CrossRefGoogle Scholar
19.Blasse, G., Bril, A.Luminescence of phosphors based on host lattices ABO4 (A is Sc, In; B is P, V, Nb). J. Chem. Phys. 50, 2974 (1969)CrossRefGoogle Scholar
20.Nieuwport, W.C., Blasse, G.Linear crystal field terms and the 5D07F0 transition of the Eu3+ ion. Solid State Commum. 4, 227 (1966)CrossRefGoogle Scholar
21.Kiss, Z.J., Weakliem, H.A.Stark effect of 4f states and linear crystal field in BaClF:Sm2+. Phys. Rev. Lett. 15, 457 (1965)CrossRefGoogle Scholar
22.Oomen, E.W.J.L., van Dongen, A.M.A.Europium (III) in oxide glasses: Dependence of the emission spectrum upon glass composition. J. Non-Cryst. Solids 111, 205 (1989)CrossRefGoogle Scholar
23.Garcia Sole, J., Bausa, L.E., Jaque, D.An Introduction to Optical Spectroscopy of Inorganic Solids (John Wiley & Sons, Ltd., UK 2005)207210CrossRefGoogle Scholar
24.Blasse, G.The influence of crystal structure on the luminescence of tantalates and niobates. J. Solid State Chem. 72, 72 (1988)CrossRefGoogle Scholar
25.Kitai, A.H.Solid State Luminescence (Chapman and Hall, New York 1993) Chap. 5 39CrossRefGoogle Scholar
26.Blasse, G.Energy transfer in oxide phosphors. Philips Res. Rep. 24, 131 (1969)Google Scholar