Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T13:02:49.096Z Has data issue: false hasContentIssue false

Photocatalytic activity enhancement of TiO2 porous thin film due to homogeneous surface modification of RuO2

Published online by Cambridge University Press:  16 June 2011

Peng Liu
Affiliation:
State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, People’s Republic of China
Weiying Li*
Affiliation:
State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, People’s Republic of China
Jingbo Zhang*
Affiliation:
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
Yuan Lin
Affiliation:
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
*
a)Address all correspondence to these authors. e-mail: [email protected]
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Ruthenium dioxide (RuO2) was uniformly modified on TiO2 porous thin film by impregnation of Ru-contained dye on the film followed by sintering it at 450 °C to burn off organic matters and form ruthenium oxide, which is named as impregnation method. The homogenous modification of metal oxide inside porous thin film can be realized by the impregnation method, and the modification amount of RuO2 can be easily adjusted by the iteration numbers of impregnation and sintering. Appropriate amount of uniformly modified RuO2 was found to obviously enhance photocatalytic performance of TiO2 to degrade eosin Y. The photocatalysis enhancement was attributed to the shallow hole traps on the surface of nanoparticles formed by RuO2, and these traps can retard recombination of hole with electron.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rodriguez, E., Peche, R., Merino, J.M., and Camarero, L.M.: Decoloring of aqueous solutions of indigocarmine dye in an acid medium by H2O2/UV advanced oxidation. Environ. Eng. Sci. 24, 363 (2007).Google Scholar
2.Fujihira, M., Satoh, Y., and Osa, T.: Heterogeneous photocatalytic oxidation of aromatic-compounds on TiO2. Nature 293, 206 (1981).CrossRefGoogle Scholar
3.FuJishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).Google Scholar
4.Bakardjieva, S., Šubrt, J., Štengl, V., Dianez, M.J., and Sayagues, M.J.: Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B 58, 193 (2005).CrossRefGoogle Scholar
5.He, J.F., Liu, Q.H., Sun, Z.H., Yan, W.S., Zhang, G.B., Qi, Z.M., Xu, P.S., Wu, Z.Y., and Wei, S.Q.: High photocatalytic activity of rutile TiO2 induced by iodine doping. J. Phys. Chem. C 114, 6035 (2010).Google Scholar
6.Berger, T., Sterrer, M., Diwald, O., Knozinger, E., Panayotov, D.T., Thompson, L., and Yates, J.T.: Light-induced charge separation in anatase TiO2 particles. J. Phys. Chem. B 109, 6061 (2005).Google Scholar
7.Rupa, V., Manikandan, D., Divakar, D., and Sivakumar, T.: Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17. J. Hazard. Mater. 147, 906 (2007).CrossRefGoogle ScholarPubMed
8.Choi, J., Park, H., and Hoffmann, M.R.: Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783 (2010).CrossRefGoogle Scholar
9.He, C., Yu, Y., and Hu, X.F.: Influence of silver doping on the photocatalytic activity of titania films. Appl. Surf. Sci. 200, 239 (2002).Google Scholar
10.Zhao, J.J., Sallard, S., Smarsly, B.M., Gross, S., Bertino, M., Boissiere, C., Chen, H.R., and Shi, J.L.: Photocatalytic performances of mesoporous TiO2 films doped with gold clusters. J. Mater. Chem. 20, 2831 (2010).CrossRefGoogle Scholar
11.Simon, P., Pignon, B., Miao, B., Coste-Leconte, S., Leconte, Y., Marguet, S., Jegou, P., Bouchet-Fabre, B., Reynaud, C., and Herlin-Boime, N.: N-doped titanium monoxide nanoparticles with TiO rock-salt structure, low energy band gap, and visible light activity. Chem. Mater. 22, 3704 (2010).Google Scholar
12.Liu, G., Sun, C.H., Smith, S.C., Wang, L.Z., Lu, G.Q., and Cheng, H.M.: Sulfur doped anatase TiO2 single crystals with a high percentage of {0 0 1} facets. J. Colloid Interface Sci. 349, 477 (2010).CrossRefGoogle Scholar
13.Kang, I.C., Zhang, Q.W., Yin, S., Sato, T., and Saito, F.: Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment. Appl. Catal. B 80, 81 (2008).CrossRefGoogle Scholar
14.Rego, L.G.C., da Silva, R., Freire, J.A., Snoeberger, R.C., and Batista, V.S.: Visible light sensitization of TiO2 surfaces with Alq3 complexes. J. Phys. Chem. C 114, 1317 (2010).CrossRefGoogle Scholar
15.Li, M., Wang, Z.L., Shi, H.Z., and Zeng, Y.: Surface morphology, spectra and photocatalytic bactericidal effect of chlorophyll-sensitizing TiO2 crystalline phases. J. Inorg. Mater. 18, 1261 (2003).Google Scholar
16.Tachikawa, T., Tojo, S., Kawai, K., Endo, M., Fujitsuka, M., Ohno, T., Nishijima, K., Miyamoto, Z., and Majima, T.: Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J. Phys. Chem. B 108, 19299 (2004).CrossRefGoogle Scholar
17.Lin, M.L., Lo, M.Y., and Mou, C.Y.: PtRu nanoparticles supported on ozone-treated mesoporous carbon thin film as highly active anode materials for direct methanol fuel cells. J. Phys. Chem. C 113, 16158 (2009).CrossRefGoogle Scholar
18.Yoo, S.H. and Park, S.: Electrocatalytic applications of a vertical Au nanorod array using ultrathin Pt/Ru/Pt layer-by-layer coatings. Electrochim. Acta 53, 3656 (2008).Google Scholar
19.Chou, J.C. and Chen, C.W.: Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs. IEEE Sens. J. 9, 277 (2009).Google Scholar
20.Cataldi, T.R.I., De Benedetto, G.E., and Bianchini, A.: Enhanced stability and electrocatalytic activity of a ruthenium-modified cobalt-hexacyanoferrate film electrode. J. Electroanal. Chem. 471, 42 (1999).Google Scholar
21.De Benedetto, G.E. and Cataldi, T.R.I.: Highly-stabilized polynuclear indium-hexacyanoferrrate film electrodes modified by ruthenium species. Langmuir 14, 6274 (1998).CrossRefGoogle Scholar
22.Macherzynski, M., Milczarek, G., Mamykin, S., Romanyuk, V., and Kasuya, A.: Electrochemical preparation of photosensitive porous n-type Si electrodes, modified with Pt and Ru nanoparticles. Electrochim. Acta 55, 4395 (2010).Google Scholar
23.Yoon, D.S., Roh, J.S., Lee, S.M., and Baik, H.K.: Investigation of the surface modification for Ru and RuOx films using a post-treatment method for high-dielectric applications. J. Mater. Sci.- Mater. Electron. 14, 511 (2003).Google Scholar
24.Ye, J.S., Cui, H.F., Liu, X., Lim, T.M., Zhang, W.D., and Sheu, F.S.: Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small 1, 560 (2005).CrossRefGoogle ScholarPubMed
25.Kawano, K., Kosuge, H., Oshima, N., and Funakubo, H.: Conformability of ruthenium dioxide films prepared on substrates with capacitor holes by MOCVD and modification by annealing. Electrochem. Solid-State Lett. 9, C175 (2006).Google Scholar
26.Hrapovic, S. and Jerkiewicz, G.: Environmentally Induced Cracking of Metals, Proceedings, edited by Elboujdaini, M., Ghali, E., and Zheng, W. (Canadian Inst. Min., Met. & Petr., Montreal, 2000), p. 191.Google Scholar
27.Yin, X., Tan, W., Zhang, J., Weng, Y., Xiao, X., Zhou, X., Li, X., and Lin, Y.: The effect mechanism of 4-ethoxy-2-methylpyridine as an electrolyte additive on the performance of dye-sensitized solar cell. Colloids Surf. A 326, 42 (2008).Google Scholar
28.Li, Y.Z., Zhang, H., Guo, Z.M., Han, J.J., Zhao, X.J., Zhao, Q.N., and Kim, S.J.: Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst. Langmuir 24, 8351 (2008).CrossRefGoogle ScholarPubMed
29.Li, X.Y., Wang, D.S., Cheng, G.X., Luo, Q.Z., An, J., and Wang, Y.H.: Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl. Catal. B 81, 267 (2008).Google Scholar
30.Chiou, C.H., Wu, C.Y., and Juang, R.S.: Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions. Sep. Purif. Technol. 62, 559 (2008).Google Scholar
31.Ibhadon, A.O., Greenway, G.M., and Yue, Y.: Photocatalytic activity of surface modified TiO2/RuO2/SiO2 nanoparticles for azo-dye degradation. Catal. Commun. 9, 153 (2008).CrossRefGoogle Scholar
32.Einaga, H., Ibusuki, T., and Futamura, S.: Improvement of catalyst durability by deposition of Rh on TiO2 in photooxidation of aromatic compounds. Environ. Sci. Technol. 38, 285 (2004).CrossRefGoogle ScholarPubMed