Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T08:50:36.596Z Has data issue: false hasContentIssue false

Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites

Published online by Cambridge University Press:  31 January 2011

Hermann Holzer
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
David C. Dunand
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

Powder metallurgy was used to fabricate fully dense, unreacted composites consisting of a copper matrix containing 50–60 vol% ZrW2O8 particles with negative thermal expansion. Upon cycling between 25 and 300 °C, the composites showed coefficients of thermal expansion varying rapidly with temperature and significantly larger than predicted from theory. The anomalously large expansion on heating and contraction on cooling are attributed to the volume change associated with the allotropic transformation of ZrW2O8 between its high-pressure γ-phase and its low-pressure α- or β-phases. Based on calorimetry and diffraction experiments and on simple stress estimations, this allotropic transformation is shown to result from the hydrostatic thermal stresses in the particles due to the thermal expansion mismatch between matrix and reinforcement.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Clyne, T.W. and Withers, P J., An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
2.Ashby, M.F., Materials Selection in Mechanical Design (Pergamon, Oxford, 1992).Google Scholar
3.Ashby, M.F., Acta Metall. Mater. 41, 1313 (1993).CrossRefGoogle Scholar
4.Verdon, C. and Dunand, D.C., Scripta Mater. 36, 1075 (1997).Google Scholar
5.Martinek, C. and Hummel, F.A., J. Am. Ceram. Soc. 51, 227 (1968).CrossRefGoogle Scholar
6.Evans, J. S. O., Mary, T. A., Vogt, T., Subramanian, M. A., and Sleight, A. W., Chem. Mater. 8, 2809 (1996).Google Scholar
7.Mary, T.A., Evans, J. S. O., Vogt, T., and Sleight, A.W., Science 272, 90 (1996).CrossRefGoogle Scholar
8.Evans, J. S. O., Hu, Z., Jorgensen, J. D., Argyriou, D. N., Short, S., and Sleight, A. W., Science 275, 61 (1997).CrossRefGoogle Scholar
9.Pryde, A.K.A, Hammonds, K.D., Dove, M.T., Heine, V., Gale, J.D., and Warren, M.C., J. Phys. Condens. Matter 8, 10973 (1996).CrossRefGoogle Scholar
10.Pryde, A.K.A, Hammonds, K.D., Dove, M.T., Heine, V., Gale, J.D., and Warren, M. C., Phase Transitions 61, 141 (1997).CrossRefGoogle Scholar
11.Chu, C. N., Saka, N., and Suh, N. P., Mater. Sci. Eng. 95, 303 (1987).CrossRefGoogle Scholar
12.Chang, L.L. Y., Scroger, M. G., and Phillips, B., J. Am. Ceram. Soc. 50, 211 (1967).CrossRefGoogle Scholar
13.Graham, J., Wadsley, A. D., Weymouth, J.H., and Williams, L.S., J. Am. Ceram. Soc. 42, 570 (1959).CrossRefGoogle Scholar
14.Chang, S. Y. and Lin, S. J., Scripta Mater. 35, 225 (1996).CrossRefGoogle Scholar
15.Smithells Metals Reference Book, edited by Brandes, E. A. and Brook, G. B. (Butterworth-Heineman Ltd., Oxford, 1992).Google Scholar
16., Wah-Chang, Zirconium Tungstate Property Sheet, 30 July 1996.Google Scholar
17.Atkins, P., Physical Chemistry, 5th ed. (Freedman, New York, 1994).Google Scholar
18.Lee, J. K., Earmme, Y. Y., Aaronson, H. I., and Russell, K. C., Metall. Trans. 11, 1837 (1980).CrossRefGoogle Scholar
19.Meyers, M.A. and Chawla, K.K., Mechanical Metallurgy Principles and Applications (Prentice-Hall, Englewood Cliffs, NJ, 1984).Google Scholar
20.Hahn, T.A., in Metal Matrix Composites: Mechanisms and Properties, edited by Everett, R. K. and Arsenault, R.J. (Academic Press, Boston, 1991), p. 329.Google Scholar
21.Turner, P.S., J. Res. Natl. Bur. Stand. 37, 239 (1946).CrossRefGoogle Scholar
22.Schapery, R.A., J. Comp. Mater. 2, 380 (1968).CrossRefGoogle Scholar
23.Kerner, E.H., Proc. Phys. Soc. 69, 808 (1956).CrossRefGoogle Scholar
24.Shen, Y.L., Needleman, A., and Suresh, S., Metall. Mater. Trans. 25, 839 (1994).CrossRefGoogle Scholar
25.Balch, D.K., Fitzgerald, T. J., Michaud, V. J., Mortensen, A., Shen, Y. L., and Suresh, S., Metall. Mater. Trans. 27, 3700 (1996).Google Scholar
26.Shen, Y.L., Mater. Sci. Eng. 237, 102 (1997).CrossRefGoogle Scholar
27.Sigmund, O. and Torquato, S., J. Mech. Phys. Solids 45, 1037 (1997).Google Scholar
28.Elomari, S., Boukhili, R., SanMarchi, C., Mortensen, A., and Lloyd, D. J., J. Mater. Sci. 32, 2131 (1997).Google Scholar
29.Elomari, S., Boukhili, R., and Lloyd, D.J., Acta Mater. 44, 1873 (1996).Google Scholar
30.Dunand, D.C. and Mortensen, A., Acta Metall. Mater. 39, 127 (1991).CrossRefGoogle Scholar
31.Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals (American Society for Metals, Metals Park, OH, 1979).Google Scholar