Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T20:59:10.706Z Has data issue: false hasContentIssue false

Phase transformation and characterization of TiO2 and ZrO2 addition in the Li2O–Al2O3-SiO2 gels

Published online by Cambridge University Press:  31 January 2011

Ming-Hong Lin
Affiliation:
Department of Mechanical Engineering, National Kaohsiung Institute of Technology, 415 Chien-Kung Road, Kaohsiung, 80782, Taiwan, Republic of China
Moo-Chin Wang
Affiliation:
Department of Mechanical Engineering, National Kaohsiung Institute of Technology, 415 Chien-Kung Road, Kaohsiung, 80782, Taiwan, Republic of China
Get access

Abstract

Glass-ceramic powders with a composition of Li2O · Al2O3 · 4SiO2 (LAS) have been synthesized by the sol-gel technique using LiOCH3, Al(OC2H5)3, Si(OC2H5)4, Ti(OC2H5)4, and Zr(OC2H5)4 as starting materials and the phase transformation behavior during calcination has been investigated. Differential thermal analysis (DTA), x-ray diffraction (XRD), and scanning electron microscopy (SEM) were utilized to determine the thermal behavior of the gels. Considering the LAS gels with 6.0 wt. % TiO2 and various wt. % ZrO2 content, and peak position of the β-spodumene phase formation in DTA curves was shifted to a higher temperature when the ZrO2 content was increased. The activation energy of β-spodumene crystallization was 283.8 kcal/mol for LAS gels with 6.0 wt. % TiO2 and 2.0 wt. % ZrO2. Unlike foregoing studies for LAS gels, during calcination of the dried LASTZ gels from 800 °C to 1200 °C neither β-eucryptite nor γ-spodumene was noted to be present. The crystallized phases comprised of β-spodumenes as the major phase and rutile (TiO2) together with zirconia (ZrO2) are precipitated as minor phases.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haas, P. A., Chem. Eng. Progress, Apr., 44 (1989).Google Scholar
2. Johnsor, D. W. Jr.., Am. Ceram. Soc. Bull. 64, 1597 (1985).Google Scholar
3. Dislich, H., J. Non-Cryst. Solids 73, 599 (1985).CrossRefGoogle Scholar
4. Schmidt, H., J. Non-Cryst. Solids 73, 681 (1985).CrossRefGoogle Scholar
5. Samuneva, B., Jambazov, S., Lepkova, D., and Dimitriev, Y., Ceram. Int. 16, 355 (1990).CrossRefGoogle Scholar
6. Colomban, Ph., Ceram. Int. 15, 23 (1989).CrossRefGoogle Scholar
7. Murakami, H., Yaegashi, S., Nishino, J., Shiohara, Y., and Tanaka, S., Jpn. J. Appl. Phys. 29, 2715 (1990).CrossRefGoogle Scholar
8. Beall, G. H. and Duke, D. A., in Glass Science and Technology, edited by Uhlmann, D.R. and Kreadl, N.J. (Academic Press, New York, 1983), Vol. 1, pp. 403445.Google Scholar
9. Suzuki, H., Takahashi, J., and Saito, H., J. Chem. Soc. Jpn. (10), 1312 (1991).Google Scholar
10. Tummala, R. R., J. Am. Ceram. Soc. 74, 895 (1991).CrossRefGoogle Scholar
11. Knickerbocker, S., Tuzzolo, M. R., and Lawhorne, S., J. Am. Ceram. Soc. 72, 1873 (1989).CrossRefGoogle Scholar
12. Yang, J. S., Sakka, S., Yoko, T., and Hozuka, H., J. Mater. Sci. 26, 1827 (1991).CrossRefGoogle Scholar
13. Suzuki, H., Takahashi, J., and Saito, H., J. Chem. Soc. Jpn. (10), 1319 (1991).Google Scholar
14. Orcel, G. and Hench, L.L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D.R. (John Wiley and Sons, Inc., New York, 1986), pp. 224230.Google Scholar
15. Phalippon, J., Prassas, M., and Zarzycki, J., J. Non-Cryst. Solids 48, 17 (1982).CrossRefGoogle Scholar
16. Veltri, R. and Scola, D., Powder Metall. Int. 21, 18 (1989).Google Scholar
17. Kobayashi, H., Ishibashi, N., Akiba, T., and Mitamura, T., Yogyo Kyokai Shi (J. Ceram. Soc. Jpn.) 98, 703 (1990).Google Scholar
18. C-Chen, , Yen, F-S., and Huang, C-Y., Ceram. Int. 20, 379 (1994).CrossRefGoogle Scholar
19. Artaki, I., Bradely, M., Zerda, T. W., Jonas, J., Orcel, G., and Hench, L. L., in Science of Ceramic Chemical Processing, edited by Hench, L. L. and Ulrich, D.R. (John Wiley and Sons, Inc., New York, 1983), pp. 7380.Google Scholar
20. Orcel, G. and Hench, L.L., J. Non-Cryst. Solids 79, 177 (1986).CrossRefGoogle Scholar
21. Hsu, J. Y. and Speyer, R. F., J. Am. Ceram. Soc. 73, 3585 (1990).CrossRefGoogle Scholar
22. Wang, M.C., J. Ceram. Soc. Jpn. 102, 109 (1994).CrossRefGoogle Scholar
23. Sack, V. W. and Scheidler, H., Glastech. Ber. 39, 126 (1966).Google Scholar
24. Marotta, A., Buri, A., and Valenti, G. L., J. Mater. Sci. 13, 2483 (1978).CrossRefGoogle Scholar