Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T12:57:37.283Z Has data issue: false hasContentIssue false

Phase relations and superconducting properties of the Y–Ni–B–C system

Published online by Cambridge University Press:  26 July 2012

G. Behr
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, PF 27 00 16, D-01171 Dresden, Germany
W. Löser
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, PF 27 00 16, D-01171 Dresden, Germany
G. Graw
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, PF 27 00 16, D-01171 Dresden, Germany
K. Nenkov
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, PF 27 00 16, D-01171 Dresden, Germany
U. Krämer
Affiliation:
Institut für Kristallographie und Festkörperphysik der TU Dresden, Germany
A. Belger
Affiliation:
Institut für Kristallographie und Festkörperphysik der TU Dresden, Germany
B. Wehner
Affiliation:
Institut für Kristallographie und Festkörperphysik der TU Dresden, Germany
Get access

Extract

The influence of composition and high-temperature heat treatment on phase content and superconducting properties of the Yni2B2C phase was investigated. Phase relations in those parts of the Y–Ni–B–C quaternary phase diagram, which are relevant for the YNi2B2C intermetallic phase formation, were revealed by x-ray diffraction, optical and scanning electron microscopy, and high-temperature differential thermoanalysis. A widespread interval of superconducting transition temperatures TC = 10.4–15.2 K and small transition width <0.3 K were determined from samples of different nominal compositions after high-temperature annealing. The different intrinsic properties are ascribed to composition variations of the YNi2B2C phase and related to structure parameters, residual resistance ratios, and element concentrations determined by the electron probe microanalysis.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nagarajan, G., Mazumdar, G., Hossain, Z., Dhar, S. K., Gopalakrishnan, K. V., Gupta, L. C., Godart, C., Padalia, B. D., and Vijayaghavan, R., Phys. Rev. Lett. 72, 274277 (1994).CrossRefGoogle Scholar
2.Cava, R. J., Takagi, H., Batlogg, B., Zandbergen, H. W., Krajewski, J. J., Peck, W. F. Jr., van Dover, R. B., Felder, R. J., Siegrist, T., Mizuhashi, M., Lee, J.O., Eisaki, H., Carter, S. A., and Uchida, S., Nature 367, 252253 (1994).CrossRefGoogle Scholar
3.Xu, M., Canfield, P.C., Ostenson, J. E., Finnemore, D. K., Cho, B. K., Wang, Z. R., and Johnston, D. C., Physica C 227, 321326 (1994).CrossRefGoogle Scholar
4.Cava, R. J., Takagi, H., Batlogg, B., Zandbergen, H. W., Krajewski, J. J., Peck, W. F. Jr., van Dover, R. B., Felder, R. J., Siegrist, T., Mizuhashi, M., Lee, J.O., Eisaki, H., Carter, S. A., and Uchida, S., Nature 367, 146148 (1994).CrossRefGoogle Scholar
5.Ström, V., Kim, K. S., Grishin, A. M., and Rao, K. V., J. Mater. Res. 11, 572579 (1996).CrossRefGoogle Scholar
6.Buchgeister, M., Handstein, A., Klosowski, J., Mattern, N., Verges, P., and Wiesner, U., Mater. Lett. 22, 203207 (1995).CrossRefGoogle Scholar
7.Cho, B. K., Canfield, P. C., Miller, L. L., Finnemore, D. K., Johnston, D. C., Beyermann, W. P., and Yatskar, A., Phys. Rev. B 52, 36843695 (1995).CrossRefGoogle Scholar
8.Takeya, H., Hirano, T., and Kadowaki, K., Physica C 256, 220226 (1996).CrossRefGoogle Scholar
9.Takeya, H., Kadowaki, K., Mirata, K., and Mirano, T., J. Alloy Comp. 245, 9499 (1996).CrossRefGoogle Scholar
10.Rathnayaha, K. D. D., Bhatnagar, A. K., Parasiris, A., Nagle, D. G., Canfield, P. C., and Cho, B. K., Phys. Rev. B 55, 85068519 (1997).CrossRefGoogle Scholar
11.Schmidt, H., Weber, M., and Braun, H. F., Physica C 246, 177185 (1995).CrossRefGoogle Scholar
12.Buchgeister, M. and Pitschke, W., Physica C 264, 250254 (1996).CrossRefGoogle Scholar
13.Terasa, R., Diploma Theses, Technical University of Dresden, 1996.Google Scholar
14.Gangopadhyay, A. K., Schuetz, A. J., and Schilling, J. S., Physica C 246, 317322 (1995).CrossRefGoogle Scholar
15.Murayama, C., Mori, N., Takagi, H., Eisaki, H., Mizuhashi, K., Uchida, S., and Cava, R. J., Physica C 235–240, 25452546 (1994).CrossRefGoogle Scholar
16.Szillat, H., Kuhn, H., Schuster, Th., Majewski, P., Seeger, M., Aldinger, F., and Kronmüller, H., Physica C 280, 4351 (1997).CrossRefGoogle Scholar
17.Singh, D. J., Solid State Commun. 98, 89902 (1996).Google Scholar
18.Mattheiss, L. F., Siegrist, T., and Cava, R. J., Solid State Commun. 91, 587590 (1994).CrossRefGoogle Scholar