Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T11:27:45.782Z Has data issue: false hasContentIssue false

Partial substitution of 18O in YBa2Cu3O7: Investigations of inhomogeneities and their effect on Tc

Published online by Cambridge University Press:  31 January 2011

William K. Ham
Affiliation:
College of Chemistry, University of California, Berkeley, California 94720
Steven W. Keller
Affiliation:
College of Chemistry, University of California, Berkeley, California 94720
James N. Michaels
Affiliation:
College of Chemistry, University of California, Berkeley, California 94720
Angelica M. Stacy*
Affiliation:
College of Chemistry, University of California, Berkeley, California 94720
Dimitry Krillov
Affiliation:
Varian Research Center, 611 Hansen Way, Palo Alto, California 94303
David T. Hodul
Affiliation:
Varian Research Center, 611 Hansen Way, Palo Alto, California 94303
Ronald H. Fleming
Affiliation:
Charles Evans and Associates, 301 Chesapeake Drive, Redwood City, California 94063
*
a)Address correspondence to this author.
Get access

Abstract

The possibility of site-selective substitution of 18O into YBa2Cu3O7 was explored. Samples containing various quantities of 18O were prepared by processing in 18O2 both at 950 °C and at 400 °C. The samples were characterized by secondary ion mass spectroscopy (SIMS), temperature programmed desorption (TPD) and reduction (TPR), Raman spectroscopy, and magnetization measurements. Measurements of the shifts in the Raman active modes with 18O substitution and of the ratios of 18O to 16O by TPD, TPR, and SIMS show that even for temperatures as low as 400 °C and times as short as 2 h. 18O is not substituted exclusively into the chain site (O1) in YBa2Cu3O7. In addition, there is no consistent variation in the shifts in Tc with the degree of substitution; therefore, the isotope effect for a sample with 100% 18O cannot be predicted by a linear extrapolation of data obtained for samples with partial 18O substitution. The mechanism of oxygen substitution, the difficulties of measuring the true magnitude of the oxygen isotope shift, and the meaning of the small isotope shift are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Reynolds, C. A.Serin, B.Wright, W.H. and Nesbitt, L.B.Phys. Rev. 78 487(1950).Google Scholar
2Maxwell, E.Phys. Rev. 78 477(1950).CrossRefGoogle Scholar
3Bardeen, J.Cooper, L. N. and Schrieffer, J. R.Phys. Rev. 106 162(1957).Google Scholar
4Bednorz, J. G. and Miiller, K. A.Z. Phys. B64 189(1986).Google Scholar
5(a) Wu, M.K.Ashburn, J.R.Tomg, C.J.Hor, P.H.Meng, R.L.Gao, L.Huang, Z.J.Wang, Y.Q. and Chu, C.W.Phys. Rev. Lett. 58 908(1987) and (b) P.H. Hor R.L. Meng, Y.Q. Wang, L. Gao, Z.J. Huang, J. Bechtold, K. Forster, and C. W. Chu, Phys. Rev. Lett. 58, 1891 (1987).CrossRefGoogle Scholar
6(a) Michel, C.Hervieu, M.Borel, M. M.Grandin, A.Deslandes, F.Provost, J. and Raveau, B.Z. Phys. B68 421(1987); (b) C&E News 66 (5), 5 (1988); and (c) M.A. Subramanian, C. C. Torardi J. C. Calabrese, J. Gopalakrishnan, K.J. Morrisey, T. R. Askew R.B. Flippen, U. Chowdhry, and A. W. Sleight Science 239, 1015 (1988).CrossRefGoogle Scholar
7Proc. of the Int. Conf. on Novel Mechanisms of Superconductivity, Berkeley, CA, June 1987, edited by Wolf, S.A. and Kresin, V. L. (Plenum, New York, 1987).CrossRefGoogle Scholar
8Leary, K. J.Loye, H.C. zur, Keller, S. W.Faltens, T.A.Ham, W.K, Michaels, J.N. and Stacy, A.M.Phys. Rev. Lett. 59 1236(1987).Google Scholar
9Katayama-Yoshida, H., Hirooka, T.Mascarenhas, A.J.Okabe, Y.Takahashi, T.Sasaki, T.Ochiai, A.Suzuki, T.Pankove, J. I.Ciszek, T. and Deb, S. K.Jpn. J. Appl. Phys. 26, L2085 (1987).CrossRefGoogle Scholar
10Morris, D.E.Kuroda, R. M.Markelz, A.G.Nickel, J.H. and Wei, J. Y.T., Phys. Rev. B37 5936(1988).Google Scholar
11Hoen, S.Bourne, L. C.Creager, W. M.Crommie, M. F.Zettl, A.Cohen, M.L.Bernardez, L. and Kinney, J. (to be published).Google Scholar
12Benitez, E. L.Lin, J.J.Poon, S.J.Farneth, W. E.Crawford, M.K. and McCarron, E. M.Phys. Rev. Lett, (in press).Google Scholar
13Otf, K. C. and Smith, J. L. (to be published).Google Scholar
14Cardona, M.Liu, R.Thomsen, C.Kress, W.Schonherr, E.Bauer, M.Genzel, L. and Konig, W.Solid State Commun. (in press).Google Scholar
15LePage, Y.McKinnon, W. R.Tarascon, J.M.Greene, L.H.Hull, G.W. and Hwang, D.M.Phys. Rev. B35 7245(1987).CrossRefGoogle Scholar
16Cava, R. J.Batlogg, B.Dover, R.B. van, Murphy, D.W.Sunshine, S.Siegrist, T.Remeika, J. P.Rietman, E.A.Zahurak, S. and Espinosa, G.P.Phys. Rev., Lett. 58 1676(1987).CrossRefGoogle Scholar
17Hazen, R. M.Finger, L. W.Angel, R. J.Prewitt, C. T.Ross, N. L.Mao, H. K.Hadidiacos, C. G.Hor, P. H.Meng, R. L. and Chu, C. W.Phys. Rev. B35 7238(1987).CrossRefGoogle Scholar
18Grant, P. M.Beyers, R. B.Engler, E. M.Lim, G.Parkin, S. S. P.Ramirez, M. L.Lee, V. Y.Nazzel, A.Vazquez, J. E. and Savoy, R. J.Phys. Rev. B35 7242(1987).Google Scholar
19Hinks, D.G.Sonderholm, L.Capone, D.W. II , Jorgensen, J.D.Schuller, I.K.Segre, C.U.Zhang, K. and Grace, J.D.Appl. Phys. Lett. 50 1688(1987).Google Scholar
20Capponi, J.J.Chaillaout, C.Hewat, A.W.LeJay, P.Marezio, M.Nguyen, N.Raveau, B.Soubeyroux, J. L.Tholence, J. L. and Tournier, R.Europhys. Lett. 3 1301(1987).Google Scholar
21Keller, S. W.Leary, K. J.Stacy, A.M. and Michaels, J. N.Mater. Lett. 5 357(1987).CrossRefGoogle Scholar
22Keller, S.W.Leary, K.J.Faltens, T.A.Michaels, J.N. and Stacy, A.M.ACS Symp. Ser. 351 114(1987).Google Scholar
23Kwok, W. K.Crabtree, G.W.Umezawa, A.Veal, B.W.Jorgensen, J.D.Malik, S.K.Nowicki, L. J.Paulikas, A. P. and Nunez, L.Phys. Rev. B37 106(1988).CrossRefGoogle Scholar
24Burns, G.Dracol, F.H.Freitas, P.Plaskett, T. S. and Konig, W.Solid State Commun. 64 471(1987).CrossRefGoogle Scholar
25Liu, R., Thomsen, C.Kress, W.Cardona, M.Gegenheimer, B.Wette, F. W. de, Prade, J.Kulkarni, A. D. and Schroder, U.Phys. Rev. B37 7971(1988).CrossRefGoogle Scholar
26Leary, K. J.Michaels, J. N. and Stacy, A. M.J., Catal. 101 301(1986).CrossRefGoogle Scholar
27Loye, H.C. zur, Leary, K.J.Keller, S.W.Ham, W.K.Faltens, T.A.Michaels, J. N. and Stacy, A. M.Science 238 1558(1987).CrossRefGoogle Scholar
28Batlogg, B.Cava, R.J.Jayaraman, A.Dover, R.B. van, Kourouklis, G. A.Sunshine, S.Murphy, D.W.Rupp, L.W.Chen, H.S.White, A.Short, K. T.Mujsce, A. M. and Rietman, E. A.Phys. Rev. Lett. 58 2333(1987).CrossRefGoogle Scholar
29Barker, A. S. Jr. and Sievers, A.J.Rev. Mod. Phys. 47, Suppl. 2 si (1975).Google Scholar
30Goodenough, J.B.Mat. Res. Bull. 23 401(1988).Google Scholar
31Kresin, V.Z. and Wolf, S.A.J. Superconductivity 1 143(1988).Google Scholar
32See, for example, Tinkham, M.Introduction to Superconductivity (McGraw-Hill, Inc., New York, 1975), Chap. 7.Google Scholar
33Devlin, G.E. and Corenzwit, E.Phys. Rev. 120 1964(1960).CrossRefGoogle Scholar
34Bucher, E.Muller, J.Olsen, J. L. and Palmy, C.Phys. Lett. 15 303(1965).Google Scholar
35Stritzker, B. and Buckel, W.Z., Phys. 257 1(1972).CrossRefGoogle Scholar
36Fisher, D.S.Millis, A.J.Shraiman, B. and Bhatt, R. N.Phys. Rev. Lett. 61 482(1988).CrossRefGoogle Scholar