Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T03:54:23.905Z Has data issue: false hasContentIssue false

Oxygen content and inhomogeneity effects on the electrical properties of YBa2Cu3Oy thin films

Published online by Cambridge University Press:  31 January 2011

R. Aguiar
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Spain
F. Sánchez
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Spain
M. Varela
Affiliation:
Departament de Física Aplicada i Electrònica, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona, Spain
Get access

Abstract

Oxygen content is a very important factor influencing the electrical properties of YBa2Cu3Oy. In this work the electrical properties of laser deposited YBa2Cu3Oy thin films on LaAlO3(100), in the whole range 6 ≤ y ≤ 7, are studied. An electrical network model, which randomly assigns oxygen contents and R(T) characteristics to the different elements in the circuit according to an arbitrary distribution, is used to analyze several features in the measured R(T) characteristics as a function of oxygen homogeneity. The model takes into account both short-range and long-range oxygen inhomogeneities. Good agreement between estimated oxygen contents from x-ray diffraction data in our samples and the average oxygen contents used to reproduce their R(T) characteristics is found.The model points out that oxygen homogeneity is very important in order to get the best and reproducible properties, and for conduction and superconductivity analysis through the shape or derivatives of R(T) characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iye, Y., in Physical Properties of High Temperature Superconductors III, edited by Ginsberg, D. M. (World Scientific Publishing Co. Pte. Ltd., Singapore, 1992), p. 285 and references therein.Google Scholar
2.Levine, L. E. and Däumling, M., Phys. Rev. B. 45, 8146 (1992).CrossRefGoogle Scholar
3.Jorgensen, J. D., Shaked, H., Hinks, D. G., Dabrowski, B., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Kwok, W. K., Nunez, L. H., and Claus, H., Physica C 153–155, 578 (1988).CrossRefGoogle Scholar
4.Takayama-Muromachi, E., Uchida, Y., Ishii, M., Tanaka, T., and Kato, K., Jpn. J. Appl. Phys. 26, L1156 (1987).CrossRefGoogle Scholar
5.Cava, R. J., Batlogg, B., Sunshine, S. A., Siegrist, T., Fleming, R. M., Rabe, K., Schneemeyer, L. F., Murphy, D. W., van Dover, R. B., Gallagher, P. K., Glarum, S. H., Nakahara, S., Farrow, R. C., Krajewski, J. J., Zahurak, S. M., Waszczak, J. V., Marshall, J. H., Marsh, P., Rupp, L. W., Peck, W. F., and Rietman, E. A., Physica C 153–155, 560 (1988).CrossRefGoogle Scholar
6.Feenstra, R., Norton, D. P., Budai, J. D., Christen, D. K., Lowndes, D. H., Mathiasevic, V. C., Eom, C. B., Geballe, T. H., Hellman, E. S., and Hartford, E. H., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D. T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 101.Google Scholar
7.Jones, E. C., Christen, D. K., Thompson, J. R., Feenstra, R., Zhu, S., Lowndes, D. H., Phillips, J. M., and Siegal, J. P., Phys. Rev. B 47, 8986 (1993).CrossRefGoogle Scholar
8.Thomsen, C., Wegerer, R., Habermeier, H. U., and Cardona, M., Solid State Commun. 83, 199 (1992).CrossRefGoogle Scholar
9.Fiory, A. T., Martin, S., Schneemeyer, L. F., Fleming, R. M., White, A. E., and Waszczak, J. V., Phys. Rev. B 38, 7129 (1988).CrossRefGoogle Scholar
10.Cava, R. J., Hewat, A. W., Hewat, E. A., Batlogg, B., Marezio, M., Rabe, K. M., Krajewski, J. J., Peck, W. F., and Rupp, L. W., Physica C 165, 419 (1990).CrossRefGoogle Scholar
11.Tranquada, J. M., Heald, S. M., Moodenbaugh, A. R., and Xu, Y., Phys. Rev. B 38, 8893 (1988).CrossRefGoogle Scholar
12.Champeaux, C., Marchet, P., Aubreton, J., Mercurio, J. P., and Catherinot, A., Appl. Surf. Sci. 69, 335 (1988).CrossRefGoogle Scholar
13.Ye, J. and Nakamura, K., Phys. Rev. B 48, 7554 (1993).CrossRefGoogle Scholar
14.Maki, K., Progr. Theor. Phys. 39, 897 (1968).CrossRefGoogle Scholar
15.Thompson, R. S., Phys. Rev. B 1, 327 (1970).CrossRefGoogle Scholar
16.Aslamazov, L. G. and Larkin, A. I., Phys. Lett. A 26, 238 (1968).CrossRefGoogle Scholar
17.Dionne, G. F., IEEE Trans. Magn. 27 (2), 1190 (1991).CrossRefGoogle Scholar
18.Dionne, G. F., J. Appl. Phys. 69 (8), 4883 (1991).CrossRefGoogle Scholar
19.Kreisler, A., Teherani, F. Hosseini, Depond, J. M., and Baixeras, J., in High Tc Superconductor Thin Films, edited by Correra, L. (Elsevier Science Publishers, Amsterdam, 1992), p. 131.CrossRefGoogle Scholar
20.Thorn, R. J., Physica C 190, 193 (1992).CrossRefGoogle Scholar
21.Yamamoto, K., Lairson, B. M., Bravman, J. C., and Geballe, T. H., J. Appl. Phys. 69, 7189 (1991).CrossRefGoogle Scholar
22.Cava, R. J., Batlogg, B., Rabe, K. M., Rietman, E. A., Gallagher, P. K., and Rupp, L. W., Physica C 156, 523 (1988).CrossRefGoogle Scholar